FSA

Who is this document aimed at?

This document is aimed at anyone who wants to write short (or even long) programs that add functionality to Flight Simulator via key presses. Example is creating a short utility that pauses twenty minutes before ETA, through to adding utilities that can add autopilot to CFS2. Some understanding of FSUIPC is required, and a copy of Pete Dowson’s FSUIPC for Programmers is essential reading. Some understanding of programming in C is assumed.

What is FSA?

FSA is a utility for Microsoft® Flight Simulator and FSUIPC. It will work with any registered version of FSUIPC (plus versions of FSUIPC that do not need to be registered). There are no plans to get accreditation for FSA, so you can basically consider it a ‘freebie’ for registered versions of FSUIPC.

What does FSA do?

FSA executes high-level code that can interface with FSUIPC. The code is based on a subset of the C programming language, plus some extensions required for FSA. Here is an example.

int ground_altitude at 0x0020;

key(Control,’A’){

char buff[256];

sprintf(buff,”Ground altitude = %d metres”,ground_altitude);

printstr(buff);

}

To execute this code, ensure Flight Simulator is running, then
1. Load the code into the FSA editor.

2. Click the Compile button (F9).

3. Click the Run button (F5).

4. Switch to Flight Simulator.

5. Type Control ‘A’

6. Switch to FSA. You should see the ground altitude on the Program Output page of FSA.

Here are a few things to note about the code.

1. The variable ground_altitude is defined at location 0x0020. Please consult Pete Dowson’s FSUIPC for Programmers to see that in FSUIPC the ground altitude is found in location Hex 0020. It is four bytes long so it is an int.
2. The function key is a built in function. It takes two parameters. The first parameter is the word Control, or an integer describing the shift state indicator (again, see FSUIPC for Programmers), section Hot keys for applications. This parameter relates to byte 1. Most times you’ll program a control key, so I accepted the keyword Control in this case. FSA simply translates this to the number 2. The second parameter is a single character (enclosed in quotes) that determines the key to be used. In this case, pressing Control ‘A’ will fire the routine.
3. In the sprintf statement, the variable ground_altitude is recognised by the interpreter to be an FSUIPC variable, four bytes long and living at Hex 0020 in FSUIPC. The interpreter picks this up from FSUIPC. The char array buff is recognised to be in FSA’s variable space.
4. The function printstr is built into FSA, and outputs a string to the Program Output page of FSA.

5. On exit from the function, the process halts and waits for further input.

How does FSA work?
FSA code is compiled to an intermediate code (rather like assembler) and executed by the FSA interpreter. It is similar in concept to any interpreted language. The only way to begin execution of code is via a key command. Note that multiple different key commands can be issued. For example, you could execute code for Control-A and Control-B. FSA prevents you from multiple executions of the same key code.
To run FSA, extract it and run. No installation process is necessary. You should see something like the following screenshot when your file is loaded.

To compile, click the red button (hotkey F9). If it compiles, the button will deactivate. If it fails to compile, you can go to the Compiler page and look at the error report. You do not need Flight Simulator running to compile.

You do need Flight Simulator running to run the compiled code. Once you’ve compiled, click the Run button (hotkey F5). It’s to the right of the Compile button. When connected the button will change to yellow, and you will be automatically taken to the ‘Program Output’ page. All you need do then is go back to Flight Simulator and play with your chosen keys.
[image: image1.png]pts\iutopilot. txt

Source | Compier

Sequence uncheck_alt_hold() (
byte burf(2sel:
printste ("Start uncheck alt hold"};
Sprint (buff,"Glideslope needle 5d",glideslope_needle] ;
princstr (puts) ;
while ((glideslope_needle < -40) || (glideslope_needlz > 40)
wait (1)
Sprints (buff,"Glideslope needle a",glideslope_needle] ;
printstr (pus) ;
)
ap_alt_hold = 0;
printstr ("alt hold unchecked”) ;

Take_off () (
longint local_altitude;

byte bure[z5e];

longint Ve: // Rotation speed

7"

7/ caleulate Ve

7/ 737 tables give (at sea level)
1ar.00n 8¢

Line 7: Char 43

K

There is also a Debug mode, which you can toggle into and out of via Control-D. This shows you the expanded code (after #include and #define) and shows you some debug output from each assembler instruction. Beware the performance though. In this mode, you’ll get an execution rate of about about ten assembler instructions per second.

Options | Display Compiler Output will show you the assembler output on the Compiler page. This will be mixed in with the error reports (if any), so use with care. By default, it is turned off.

What Language features does FSA support?

FSA supports the following language features

1. Declaration of variables, float (eight bytes), int (four bytes), shortint (two bytes), char and byte (one byte each and synonomous).

2. Assignments and expressions, with full floating point to integer conversion.

3. Declaration of arrays of all types shown above.

4. Pointer declarations. Pointer assignments are not yet implemented, but you can declare char *cp, for example assign it to an array and access data using cp[i].

5. if statements and if..else statements

6. return statements, including parameterised return statements

7. Functions, with or without parameters.

8. while loops

9. The #include statement.

10. The #define statement. This is currently implemented, but very badly.

What language extensions does FSA have?

1. Declaration of variables at fixed locations within the FSUIPC variable space. This includes arrays, but excludes pointers.

2. The key function, as described earlier. This function now supports a third parameter, an identifier that doesn’t require a type definition, and is stored as an integer. It holds the result from “expect another Keypress” as described in FSUIPC for Programmers.
3. Sequences. Sequences are special cases of subroutines that can run in parallel to the calling routine. There are some examples later.
4. Hex integers are defined in the standard C way (0xABCD), or alternatively preceded by a $ ($ABCD).

What inbuilt functions does FSA have?

1. The sprintf function is implemented as for C, with parameters %s, %x, %f and %d. Floating point numbers are printed to two decimal places. Width specifiers are not yet implemented, but will be coming soon.

2. The wait takes one parameter. This states the number of seconds to suspend.

3. The writeblock function writes a block of memory to FSUIPC. Use this to write blocks of data when it must be written in one FSUIPC call.
4. The readblock functionreads a block of memory from FSUIPC. Use this to read data when it must be read in one FSUIPC call.
5. The printstr function prints a character string to the Program Output page of FSA.
6. The play function plays a media file. It is intended to play .wav files, but may play others, depending on the capabilities of your system. You should use this for sound announcements (e.g. fifty feet, rotate).
Are there any known bugs?

1. I am trying to differentiate between bugs and improvements. Certain C features are missing, and I will add them later. I intend to check the concept first, then make things bug free. The primary consideration is making the whole thing backwards compatible, so that any code written by users still works with more recent versions.

2. The compiler should only allow startseq to call a sequence. It should also only allow sequences to be called from startseq. It does neither.

3. Sequences and functions do not have an independent data space. They share a common dataspace. Consequently, you cannot call a sequence more than once and expect their local data to remain independent. Similarly for recursive calling of subroutines, and functions/sequences that are called from more than one key activation. This means that you if you have a function that is can be called concurrently (e.g. you call it from Control A and Control B and have both running at the same time), the local data can get overwritten by the other routine during a task switch. This is a high priority fix and will be corrected in the next release.
4. There is no parameter type checking for functions. It is up to the user to ensure that floating point parameters are passed when floating point parameters are required. Similarly for integers.

5. FSA does not allow you to declare multiple variables in one declaration (e.g. int a,b,c;). I haven’t implemented this because I consider it bad practice, but may do it on request.

6. FSA is case-insensitive. This is due to my own laziness, and the fact that some versions of C are also case-insensitive (Microsoft C certainly used to be so. I don’t use it any more, so I don’t know if it still is).

7. #define is implemented badly. The compiler does a substituion irrespective of context. This means that if we #define MAX 3 and have a line of code MAXIMUM=10, the code will be changed to 3IMUM=10. Providing you’re aware of this limitation, you can use it. This will be fixed when I get round to it.

What improvements are likely to be coming up?
1. Width specifiers in sprintf.

2. Strings to support \ style escape characters.

3. Some improvements to the editor.

4. Variable casting

5. Indirect operators (e.g. c = *cp;)

6. Autoincrement and autodecrement.

7. Continue/Break

8. For loops.
9. Do loops.
10. Switch statements

11. Structures

12. Variable initialisation (not for FSUIPC variables).

13. #ifdef

14. Typedef specifiers.
15. Disc file manipulation functions.
16. Sequences to have independent data space.

17. Code links to Menus and/or Joystick

18. Any reasonable requests that conform to the C definition, or are needed for the interpreter to work.
19. A separation of the interpreter into a DLL, together with the facility to write compiled code to disc. This is bad news in the early stages, as it is easier during development to completely change the interpreter without worrying about version issues, but will allow external applications to execute code, other development languages (e.g. Basic, if anyone can understand it ;-)) and for developers to issue compiled code without the source.

What has been changed since the last version?

Nothing. This is the first version. (Version 0.1.0).
Can we have some examples?
Sure. They’re included in the distribution.

06 March 2005

Page 4 of 5

