
WideFS: Techical Reference
by Pete Dowson, 11

th
 February 2012

Support Forum: Pete Dowson's Support Forum

Applicable to WideServer versions 6.94 and 7.80 or later, with WideClient 6.94

Connection arrangements

With the automating of WideClient linking to WideServer on Windows XP and 2000 systems, there are several permutations

according to the manually settable options, as follows:

Case A: Server not specified in Client INI (In other words, no ServerName, ServerIPAddr or ServerNode parameters).

In this case both the WideServer PC and the WideClient PC must support mailslots (i.e. run Win2K or XP), and the

"AdvertiseService" parameter in the WideServer INI must not be set to "No" (it defaults to "1", for 1 second intervals).

Sub-case A1: Protocol is set in the Client INI:

This protocol is the one that will be used by the Client. If it isn't installed you'll get an error.

Sub-case A2: Protocol is not set in the Client INI:

The protocol tried first is the one specified by the Server in "ProtocolPreferred". If there is none, TCP is assumed, but in

either case, the client will try others if the initial one is not installed (in order TCP … SPX … UDP, cyclically).

Case B: Server is specified in Client INI (In other words, at least one of ServerName, ServerIPAddr and ServerNode

parameters are provided).

In this case the Client can work with or without Server mailslots operating to this Client PC. This depends on whether the

protocol is set:

Sub-case B1: Protocol is set in the Client INI:

Broadcasts from the Server are ignored altogether. This protocol is the one that will be used by the Client. If it isn't

installed you'll get an error. If the Client cannot find the specified Server you'll get an error.

Sub-case A2: Protocol is not set in the Client INI:

Broadcasted mailslots from the Server are needed. Only broadcasts from the specified server will be accepted—this

prevents the client from connecting to a different Server when there are more than one.

The protocol tried first is the one specified by the Server in "ProtocolPreferred". If there is none, TCP is assumed, but in

either case, the client will try others if the initial one is not installed (in order TCP … SPX … UDP, cyclically). This is

true no matter which Server identification system is used (name, address or node).

http://www.forums.simflight.com/dowson
http://www.forums.simflight.com/dowson
http://www.forums.simflight.com/dowson

Questions and Answers on how WideClient handles data

Q: Is WideFS a simple passthrough conduit to FS, or does it cache data locally?

A: WideClient maintains a memory map of all of the locations ever requested since it started running. When the values are

requested by the client applications, it gets data from there and gives it to the client in a direct response. If there are data items

which have not been requested before, it also sends appropriate requests to WideServer, whilst supplying the default value in its

memory to the applications (this would be zero). There is an option in the INI (WaitForNewData, see below) which actually

stops this return being made until WideServer has actually sent the newly requested data—this is actually enabled by default with

a 500 mSec timeout. See the DOC.

Except for Write requests from clients, the Network traffic is totally controlled by WideServer, which maintains details of all data

items requested by each client, separately, and monitors these for changes. This latter is done at FS frame rates. Only changes are

sent out. If a connection dies or closes, the list for that client is cleared (by both ends) and the process starts over.

 Q: Is there any recommended polling frequency for applications using WideFS?

A: No. It doesn't really matter, but if you are operating something graphical to run at FS speeds then you probably should try to

match average frame rates, for smoothness of your displays. Except on really powerful machines (those capable of running FS

with ease), WideServer usually works better if you limit the FS frame rates to a bit less than its average performance in any case

(as mentioned elsewhere in this document), so you would, say, set the limiter to 35 or 30 or 25 fps (according to processor) and

poll WideClient at that sort of frequency.

Of course, if your program does a lot of processing or heavy graphics, or is sharing the client PC with other such applications, you

might not be able or want to achieve such a frequency.

Since WideClient is supplying all values from its memory, directly, there's no benefit from splitting your data requests into more

or less frequently needed items. WideServer will be sending all the changes anyway. If you poll some less frequently you will just

be skipping some changes. Of course it is not the same for writes to FS. They need more consideration as they will all result in

LAN blocks to WideServer and require FS processor time when there.

Q: Is there a log setting I can use to see if I am thrashing WideFS?

A: You don't have any control over the Network operations, excepting how you write things. Certainly you should optimise writes.

Don't keep writing the same values to the same places, only write what you need to write, and don't write that frequently that

things bog down. But when you are reading you are not affecting anything on the Network. Provided you don't actually ask for any

data you don't need (for once you have it will be monitored for changes and all changes sent), then it doesn't matter. However,

don‘t take that sort of optimisation to extremes either. If you ask for every other byte only, for instance, the overheads of

comparing them all separately and blocking them all up with their own red tape, will far exceed the saving from not sending the

intervening bytes which you don‘t really need. In other words, try to apply some common sense.

Of course, if your program is also supposed to run well on the FS PC you have to consider the affect you may have on FS's

performance. But there are a lot of other factors there apart from calling the IPC interface.

Notes for trouble-shooting

If you want to use IPX/SPX then be warned: the Windows software is not so user-friendly in this area, and seems to be getting less

so. One must assume that Microsoft is neglecting this protocol these days. In particular, if either or both Server and Client PCs are

running under Windows NT or its successors Windows 2000 or XP, then some additional configuration is almost always needed.

These steps may also prove useful with Windows 95, 98, 98SE and ME. Please try ALL of them before seeking more help. I'm

afraid I really know very little about Networks as such, and all the hints listed here are actually contributed by other users.

1. NETBIOS may need to be enabled for IPX/SPX

You may need to enable NetBIOS over the IPX/SPX connection. Why? Sorry, I don't know, but this seems to be especially

important in Windows 95 or 98 if you are running a mixed Windows network.

To do this in Windows 95/98, go into the Network application in Control Panel, select the IPX/SPX protocol, and click

Properties. There will be a tab entitled NetBIOS. Select that, and then make sure ―I want to enable NetBIOS over IPX/SPX‖ is

selected.

I am not sure if this is also needed in Windows NT, 2000 or XP, nor exactly how you'd do it in those systems. But it is something

to check if you cannot get a connection. One successful user has reported that on his working set up NetBIOS is not enabled. This

is under Windows 98, so this may be an important difference to the above recommendation.

2. Server Node may need specifying for IPX/SPX

Run Flight Simulator with the WideServer.dll module installed, and then look at the WideServer.Log file that you‘ll find in the

Modules folder. Very near the start there should be a line reading something like

17248 ServerNode=0.0.49152.1264.9490

The actual numbers won't be the same, but you should find the line okay. Now insert the parameter ‗ServerNode= ...‘, quoting

exactly the same numbers after the =. into the [Config] section of each WideClient.ini file you are planning to run with IPX/SPX

protocol to link to this Server.

On Windows XP there appears to be a little problem in identifying the correct ServerNode sometimes. Windows XP seems to add

something called an IPXLoopbackAdapter, which has its own Node, and it is this which WideServer sometimes sees first. When

this happens, WideServer tries to recognise it and you may get Log entries like this:

88218 ServerNode=13330.61389.0.0.512

88218 *** WARNING! *** This ServerNode is likely to be incorrect! Running IPXROUTE to get list ...

88218 IPXROUTE config >"G:\FS9\MODULES\WideServer.ipx"

90375 ... The correct value will be one of these:

90375 ServerNode=0.0.3072.8310.62813 ("Local Area Connection")

90375 ServerNode=0.0.37578.21024.21313 ("NDISWANIPX")

In this case the first ServerNode found was, indeed, the one for the Loopback Adapter. The correct one in this case was the one for

the Local Area Connection. (Please don‘t ask me what an NDISWANIPX is, as I have no idea!)

Note that you will have to re-check this if you change LAN adapters in the Server PC, or make other similar configuration

changes. Also, please see item 7 below, concerning another potential problem with some LAN drivers providing the wrong Node

identifiers (though this may now be resolved by the IPXROUTE selection shown above).

3. Network Address may need setting for IPX/SPX

I have heard from one chap using a mixed network (Win2000 and Win98) who needed to do a bit more before it would work. To

quote him: ―On the Windows 98 PC, under Network Properties, IPX properties, there is an Advanced settings tab. In that list

there‘s something called Network Address. That must be set to a number other than zero. I just typed 13579 (or something like

that), rebooted, and now it works.‖ I‘m afraid I can‘t add anything to that.

4. Ensure IPX/SPX is associated with only one device on each PC

Another user reported that ―I had to turn off the IPX protocol on the cable modem network card making sure the one for the LAN

was enabled‖, so it seems likely that IPX/SPX, when added to more than one device, can produce routing problems.

Generally, when you add a protocol in the Network part of the Control Panel, Windows adds it without exception to all installed

network-capable devices. You will need to go through and remove it from everything but the Network adapter.

5. Connections and Sockets

Check that the parameters ‗Maximum Connections‘ and ‗Maximum Sockets‘, which you'll find under the protocol‘s Properties—

Advanced, are both set to a larger number, like 128. The default limits in Windows ME (in particular), and possibly other versions

of Windows, are definitely too low!

6. Frame Type

One user reported that the ‗Frame Type‘, under IPX/SPX Properties—Advanced, should be set to Ethernet 802.3. This shouldn't

really be needed—I‘ve always had mine on Auto—but if all else fails it is certainly worth a try—but see item 10 below too!

7. Network drivers don’t always work

One instance has been reported of a presumably buggy LAN adapter driver, a 3COM one for Windows XP, providing incorrect

Server Node data to WideServer (see item 2 above). Using the ServerNode parameters logged gave no connection. Reverting to

the slightly earlier 3COM drivers actually provided and installed by Windows XP fixed this.

Of the five numbers making it up, the first two identify the specific Network Address. If you‘ve only got one then these numbers

are normally both 0—but see also item 3 above. The other three constitute the physical address of the adapter card itself, and

appears to be called either explicitly the ‗physical address‘, or sometimes the ‗MAC address‘.

There are ways of verifying this address. These are different for the various Windows versions. On my Windows 98SE

installations I can either use the Shareware program SiSoft Sandra Pro, looking at its ―Network‖ information, or use the Windows-

supplied DOS program IPConfig (run this in a DOS window with the parameter /ALL). On Windows XP (and presumably also

earlier NT versions) you can get the information via the program IPXroute.exe.

Please also see item 10 below, which details other problems that can arise in getting the correct ServerNode values.

The address you get will actually consist of six values in hexadecimal notation. To take the example from section 2 above:

17248 ServerNode=0.0.49152.1264.9490

Each of the last three numbers can be expressed in hexadecimal, so:

 C000 04F0 2512

When these are stored in 6 consecutive 8-bit ‗bytes‘ the two halves of each 16-bit number get reversed, due to the way Intel

processors store numbers:

 00 C0 F0 04 12 25

This is how this particular physical address (or ‗MAC‘ address) will be seen in those other applications and parts of Windows.

8. Network adapters don’t seem to like sharing Interrupts

A lot of the problems I had with my Network in the early days turned out to be all due to the way either the BIOS or Windows had

configured my system. The Network card was sharing an interrupt (IRQ) with another card.

The symptoms of the problems were odd. Most things worked fine, but there were strange things going on with WideFS-

connected applications. I eventually found that the data transferred across the Network was suffering from occasional

corruption—mostly the odd extra character being inserted. I proved this by transferring some very large files across, using drag-

and-drop in Windows Explorer. Comparing them afterwards showed errors. Not many: about one character in a few million. But

enough to make the Network untrustworthy and to occasionally do odd things to applications.

Eventually, after quite a bit of hair loss (and I didn‘t have much in the first place!) I found it was IRQ sharing. More hair was then

lost trying to correct this, by things like shuffling the PCI cards around, trying to change allocations in the BIOS, and in Windows

too. Sorry, I really cannot explain how to do this stuff here—it was all guesswork, trial and error. Mostly error.

9. Network adapters can go wrong!

One other point to realise: LAN adapters are sometimes faulty. Out of seven known brands I‘ve had three failures over as many

years. It is sometimes worth changing them, or even swapping them between machines, to either eliminate or confirm this as a

possible reason for problems. Symptoms may vary from no connection at all, to unreliable or very slow operation, to actual

freezing during otherwise normal operation.

10. DNS systems sometimes give weird Internet IP addresses instead of the correct ones for your Server PC

Some folks have had problems with automatic Server recognition, or even using the Server Name, with odd IP addresses

occurring such as "208.67.216.132", which when traced appears to belong to some Internet Provider somewhere else.

This often seems to be related to having modems or routers set to use OpenDNS, and these then seem to refuse to resolve local

DNS names (as assigned by DHCP) on the network. The fix is to configure the router to not use an alternative DNS server.

Other notes for trouble-shooting

I received a solution for one odd symptom from a user with a severe slow-down using TCP/IP. It looked like block coalescing was

the cause, despite the fact that both WideServer and WideClient turn this off inside the Windows drivers. It turned out that the

Intel LAN adapter, which was integrated into the PC motherboard (in this case a Gigabyte 8IG1000 Pro) had the coalescing

algorithm coded into its firmware! The supplied driver configuration utility, when the user dug deep enough, presented options to

turn it off. This is one more thing to check, should you have such problems. I would never have thought of it!

For this particular motherboard, this was the secret. Find the entry for Network Adapters, right click on the LAN adapter and

select Properties then Advanced tab. You should get something like this:

As you can see, in the Pro/100 VE there are way more than the usual 3-5 settings available! These include Adaptive Technology,

Adaptive Transmit Threshold, Coalesce Buffers, PCI Bus Efficiency, and Transmit Control Block parameters, all of which effect

data store-and-forward and coalescing. In the case of this adapter, setting Adaptive Technology to 0 turns out to be the magic

bullet that turns it all off!

If this is wrong the symptoms are a choppy flow of data, in one or possibly both directions, and significant lag and jitter in the data

stream.

One user had severe problems with both Client and Server logging messages about ―send() done after n reties …‖, disconnections

and re-connections, ―Send() request depth over 100!‖, and even some missing and corrupted blocks (sumcheck errors). He solved

this problem himself and reported this:

―I'm pretty sure that the QOS support and an ‗auto‘-setting in the network card‘s connection properties caused the described

behaviour. QOS support was removed and the network card set to 100 MBit Full Duplex, et voila: everything runs fine!‖

That‘s it for now. If I get any other suggestions I‘ll add them here.

WidevieW compatibility

First, please note that WidevieW is by Luciano Napolitano, and is NOT part of WideFS

If you have enough PCs on your network, you can still run two or more copies of Flight Simulator linked by WidevieW, giving

you side views or maps. Only the main (flying) PC will run WideServer. You cannot run WideClient on a PC which is also

running Flight Simulator—after all, its job is really to replace it and interface to it across the network connection instead.

Note that the port numbers used by WideServer and WideClient default to 8002 and 9002, so avoiding clashes with Wideview's

default. For very large networks running more than one flying copy of Flight Simulator, WideServers with different port numbers

can link to WideClients with matching port numbers, but there can only be one WideClient on any one PC, as this provides the

interface expected by applications and there‘s no way to differentiate between two or more.

WideServer INI file options

Note: these are in the [WideServer] section of the FSUIPC4.INI file on FSX and later.

Here all the user features of the server‘s control parameter file are described. Normally you won‘t need or want to mess around

with many of these parameters. There are all placed into the ‗WideServer.ini‘ file, which goes into the Flight Simulator modules

folder along with the WideServer.dll module itself. The filetype ‗ini‘ merely refers to the file as an Initialisation file—reflecting

the fact that it is only read by the program on first loading. Changes should only ever be made when the program is not running.

Note that WideServer does not generate an INI file with all these parameters included. If they are omitted, as most of them will be

most of the time, then they assume their default meaning, as documented here.

The [Config] section (… but the [WideServer] section on FSX,)

This section of the INI file is where the physical configuration and other rather technical parameters are placed. With rare

exceptions you should not need to change any of these. The main exception is the possibility of adding a ―ProtocolPreferred‖

line if you wish—please see the discussions above on protocols.

ProtocolPreferred: This is omitted by default, leaving the choice up to clients, with TCP being defaulted throughout. If you are

using Windows XP or 2000 throughout you can force uncommitted clients to choose a specific protocol by setting this Server

parameter to one of TCP, UDP or SPX.

If you are using FSUIPC4's Server, and the UDP protocol is reliable on your system, you can obtain fast, more efficient operation

of the network by using Broadcast mode. To try this set

 BroadCastMode=Yes

in the [WideServer] section of FSUIPC4.INI. When the Clients being used are running WideClient 6.90 (or later), and UDP mode

is being used (not TCP), then all data required by all Clients is grouped together and sent for all clients in broadcasts rather than in

one-to-one specific messages.

This can reduce the load on WideServer considerably, and especially so the more Client PCs there are wanting data. In

consequence the cap on the data frame rate of 25–35 normally applied is then relaxed, allowing data frame rates of up to 60-65 (or

FS frame rates if lower). And even then the loading on WideServer is substantially lower than otherwise, and it will feel generally

more responsive.

So, how to try this? First install WideClient 6.90 or later on every client, and either remove the "Protocol=TCP" parameter from

their INI files or change it to Protocol=UDP. In FSUIPC4.INI, in the [WideServer] section, set

 BroadcastMode=Yes

 ProtocolPreferred=UDP

The latter makes it use UDP automatically for any clients not specifying otherwise.

You can mix and match as needed. If you are using any copies of WideClient with non-zero ClassInstances, they have to stay

using TCP. You should also always use TCP for unreliable connections, such as wireless ones, as there is no recovery and no

checking using UDP.

RARELY CHANGED PARAMETERS

AdvertiseService=Yes: By default, on Windows XP, WideServer ―advertises‖ itself by sending out the Server details using a Mailshot

broadcast. WideClients running on a Windows XP client PC will be able to receive these and so connect automatically. If there are several

Servers, any clients witohut explicit Server details in their configuration files (the INI) will simply connect to the first one they see.

The mailshots are sent every second for the whole time WideServer is running. The extra loading on the Network is unlikely to be noticed, but

if you want to reduce it or eliminate it altogether, just change this parameter. ―No‖ or ―0‖ will stop it, whilst a value from 1–10 will make the

interval that number of seconds.

Port=8002: This controls the port number to be addressed. Only clients using the same Port number are served by this server. You can have

several WideServers running on a network, each using a different Port number. However, you can of course only have one copy of WideClient

in each machine, as its job is to ‗pretend‘ to be an FS6IPC.DLL-equipped copy of FS98 (or FS95 or FS2000) so that FS6IPC-aware

applications will use it.

The default of 8002 is chosen only to avoid the two ports (8000 and 8001) used by WidevieW.

Port2=9002: This controls the Port number used for the file transfer option.

AutoUpdateTime=13: This sets the minimum time between AutoUpdates, in milliseconds. The default value of 13 will stop the individual data

frame rate for any client exceeding 75. Lower values than 13 can be set, but there is a limit based on the way the DLL works, and also the

capacity of the LAN. 100Mbit LANs may cope better with lower times. But watch out for FS frame rates: there needs to be some time left over

for the simulation—and of course the application at the Client end needs some time too!

RestartTime=0: This feature allows you to make WideServer automatically close down its network serving action and restart it (just as if it had

been freshly loaded) when there have been no connections for at least the specified number of seconds.

If you have problems on your network starting up the WideFS clients then this may help unclog Windows‘ sockets software – try 10 or 20

seconds. You may also find it useful to use the ‗Restart Hot Key‘ facility, described below.

This feature is disabled by setting the RestartTime to 0, and this is now the default setting as the restart has been found to cause some stutters

with some Network drivers.

AutoRestart=0: This operates a facility to automatically restart the Server (forcing all clients to reconnect) if a low frame rate (below 5) is

experienced for the specified number of seconds (with a minimum of 5). The frame rate here is the total frames per second managed for all

connected clients added together, so and average of less than 5 fps for over 5 seconds indicates a problem. However, this attempt at fixing it is a

bit of a sledgehammer and in general should be avoided. The defalut setting of 0 switches it off.

NoStoppedRestarts=Yes: Only set this to ‗No‘ (to allow restarting of all clients after extended stoppages on the FS PC) if you experience any

crashing problem otherwise, or problems whereby client applications do not properly resume when you‘ve been visiting FS menus for extended

periods.

SendTimeout=15: This is the maximum time (in seconds) for which the Server will continue to try re-sending data to a client when each

attempt is blocked for any reason. After this time has elapsed with no success in sending it data, the client is disconnected. You can disable this

action by setting the timeout to zero.

MaximumBlock=4096: This parameter controls the block sizes used by WideServer when sending altered data out to client applications. It

shouldn't be set less than 512, nor larger than 16384. The default of 4096 seems to suit most applications and the higher speed (100 mbps)

Networks, and the effect of the limitation is usually all over after the first few seconds of an application starting. After that only changed values

are re-sent so the limit is seldom reached, except possibly with TCAS applications and high numbers of moving AI aircraft in FS2002. If you

are using a slow Network connection (10 mpbs, USB, Serial or Parallel) then you may find 2048 better.

The [User] Section (… but still the [WideServer] section on FSX)

RestartHotKey=: This option allows you to define a hot key which you can use in Flight Simulator to force WideServer

automatically close down its network serving action and restart it (just as if it had been freshly loaded). If you have problems on

your LAN with WideFS clients apparently stalling then this may help unclog Windows‘ sockets software (?).

The format for specifying the hot Key is ‗keycode,shift states‘, for example:

 RestartHotKey=78,11

specifies Shift+Ctrl+N (N for "Network"). The first value determines the main key required. This is a Windows ‗virtual

keycode‘—a list of these is shown in an Appendix to this document.

The second value determines additional shift states needed, as follows

 omitted or 8 key on its own

 9 Shift +

 10 Control +

 11 Shift + Control +

 12 Alt +

 13 Shift + Alt +

 14 Control + Alt +

 15 Shift + Control + Alt +

Note, however, that not all combinations will work with all keycodes. The values can also be 0–7 instead of 8–15. The addition of

'8' here is merely to provide compatibility with the way key presses are specified in Fligfht Simulator‘s CFG files. And especially

note that the use of the ‗Alt‘ key in many combinations is problematic and will tend to invoke FS‘s menus. Avoid this key if at all

possible.

AllowShutdown=No: Set this to Yes only if you want to allow client programs to shut down your Flight Simulator computer by

writing a special value to the IPC interface. (Details for programmers are in the FSUIPC SDK -- look for offset 3320).

AllowShutdown=App can be used instead if you just want WideServer to close FS down, leaving the PC itself up and running. Of

course any applications featured in WideServer‘s ―Close‖ parameters (below), will also close.

AutoShutdown=No: Set this to ‗Yes‘ if you want WideServer to send shutdown messages to clients when Flight Sim is closed

normally. Set it to ‗Apps‘ if you want WideServer to tell clients to close down only any ―CloseReady‖ applications when FS is

closed normally. (The RunReady and CloseReady parameters for WideClient are described later).

ShutdownHotKey=: This option allows you to define a hot key that you can use in Flight Simulator to get WideServer to actually

write the special ―shut down‖ value to the IPC interface. This will be obeyed by all those WideClients with appropriate

AllowShutdown parameter settings, and then also by WideServer itself if so configured. Using this you can close FS down and

have the Client PCs also close at the same time (or a bit earlier, in fact, to ensure they see the WideFS message).

The format for specifying the hot Key is the same as above. I use Shift+Ctrl+E, so the setting is:

 ShutdownHotKey=69,11

CloseAppsHotKey=: This is to define a hot key that you can use in Flight Simulator to get WideServer to send a different

―shutdown‖ pattern via the IPC interface. This pattern asks for applications (only) to be closed—see the ―AppOnly‖ option for

AllowShutDown in the section on Wideclient, later. This will be obeyed by all WideClients with any AllowShutdown parameter

setting other than ‗No‘, and then also by WideServer itself if so configured—on the Server FS itself will be closed. Using this with

client applications loaded and closed by the RunReady and CloseReady facilities means that the applications will close when you

use the hot key to close FS, then start again when you start FS again. The WideClient program is left running on the client PCs so

that this can take effect.

The format for specifying the hot Key is the same as above. I use Shift+Ctrl+C, so the setting is:

 CloseAppsHotKey=67,11

Log=Errors+: This is a debugging aid which I may ask you to change if I need more information to help sort out a problem with

application interfacing. The default will create a WideServer.log file in the FS modules folder which contains details of basic

errors but otherwise just some starting and stopping information and (most important for me!) the version number.

Set to ‗Yes‘, this parameter logs all simulator variable read and write calls (and the results) made through WideServer. This is

really only of any use to application developers, so they can see how their program is operating once its requests have been

through WideClient.

Other settings are ‗No‘ (not recommended as you lose error data), ‗Errors‘ (only showing error reports, no other useful stuff) and

‗Debug‘ (which gives details of WideServer‘s dealing with Windows‘ Sockets too).

If you do switch on any type full logging (e.g. ‗Yes‘ or ‗Debug‘), be sure to keep the session short. The log file gets very large!

The ‗Debug‘ setting is only used on request for possible help in resolving complex problems.

Monitor=: This can be used by developers to find out what is happening to any one particular area of the FSUIPC variables

memory area—i.e. the "offsets" being written or read by WideFS applications. It is better than using ―Log=Yes‖ just to sort out a

known variable. The format is:

 Monitor=<offset>,<size>

where the offset is in hexadecimal and the size is a number of bytes in decimal. If you only want to watch one byte, you can omit

the ",<size>" part. For example

 Monitor=028C,1

makes WideServer log all network reads from and writes to this location, which happens to be the Landing Lights switch.

You can Monitor up to 8 different offset areas. Just list more <offset>,<size> parameters on the same line, thus:

 Monitor=04E0,88,48F0,10,5400,512,5600,256,5B00,128

which means 88 bytes at 0x04E0, 10 bytes at 0x48F0, and so on.

For a full picture you should use the same parameter at the client end too—i.e. in the WideClient.ini file(s).

IgnoreSumcheck=No: Setting this to ‗Yes‘ is a last resort in trying to get some server-client interaction on a system where the

initially larger client request blocks are consistently failing with sumcheck errors. The proper solution is to fix the protocol on the

LAN. (This facility dates back to Windows 95 days. There is some evidence suggesting that the IPX/SPX protocol is not

sufficiently reliable on original Windows 95 releases to provide good blocks. Users are really advised to try to upgrade to

Windows 98SE, or at least Windows 95 OSR2.1).

ShowCounts=No: Set to ‗Yes‘ to show the total network read and write counts (in bytes) in the Flight Simulator title bar.

TitleBarUpdate=Yes: Set this to ‗No‘ if you don‘t want any sign that WideServer is running. Sometimes other programs and add-

ons can be affected by the changes that WideServer makes to the Flight Simulator title bar. With this set to ‗No‘ these add-ons

may run correctly.

Action1=, Action2=, etc: These tell the program to execute the given command line on receiving the corresponding ‗Action‘

message from a WideClient. See the WideClient ini file notes for how to set this up.

These commands can have an extra parameter to make the program being run do so at HIGH priority (higher than Flight

Simulator), and optionally Hidden (i.e. running invisibly). The latter does not work with all programs, however. ONLY use these

facilities with programs that are run and completed quickly—loading control programs into an EPIC card is a good example. The

extra parameter is "HIGH" or "HIDE", respectively, as in:

 Action1=HIDE,"c:\epic\loadepic fs98prop"

Note that HIDE implies HIGH as well. It works with Loadepic. Running it at high priority improves the chances of a successful

load somewhat—when Flight Simulator is running there can be more clashes at the Epic direct interface.

Run, RunIf, Close and CloseIf parameters

These are still incorporated into WideServer for backward compatibility with users‘ existing set-ups, but these days it is much

better to use the Run options provided in FSUIPC. If anyone needs information about them please ask on the Support Forum.

KeySend parameters

These are still incorporated into WideServer for backward compatibility with users‘ existing set-ups, but new users please use the

FSUIPC Buttons page instead and assign buttons to the KeySend control in the drop down controls lists. The KeySend number

(1–255) is entered as a parameter. You can also assign keys to KeySends in FSUIPC.

WideClient INI file options

Here all the user features of the client‘s control parameter file are described. Normally you won‘t need or want to mess around

with many of these parameters. There are all placed into the ‗WideClient.ini‘ file, which goes into the same folder as the

Wideclient.exe program copy it is to be used with. The filetype ‗ini‘ merely refers to the file as an Initialisation file—reflecting the

fact that it is only read by the program on first loading. Changes should only ever be made when the program is not running.

The [Config] section

This section of the INI file is where the physical configuration and some rather technical parameters are placed. Very few of these

need ever be changed by the user:

Protocol: Set this to one of TCP, UDP, or SPX if you want to specifically make this client use that protocol. TCP is defaulted in

any case unless you are using Windows XP or 2000 on both Server and Client PCs and want to control the protocol from the

Server (see ProtocolPreferred earlier).

ServerName=: Either this or the ServerIPAddr can be provided if the TCP/IP protocol is chosen and set by the UseTCPIP

parameter. The server name is the one you assigned in the Network properties: on Windows 98 and probably others it‘s the

―computer name‖ in the Identification tab. If you are using Windows XP on both the Server and Client PCs this shouldn‘t be

necessary unless you have two or more Servers and need to keep the connection fixed to a specific one..

ServerIPAddr=: If you are using TCP/IP and you need to give the Server details, you can elect to specify the Server by its IP

Address instead of its name. If you give both, only the IP address will be used. To use this you need to have assigned a fixed IP

Address for your Server PC, as described earlier (in the ―Configure Your Network‖ section). The format is four decimal numbers

separated by points, for example:

 ServerIPAddr=192.168.0.3

I recommend using only ServerName as this avoids any difficulties with IP address changes.

ServerNode=: This is only used with the SPX protocol, and can be omitted for Windows 95, 98 and (probably) ME installations,

but it is often needed when Windows NT, Windows 2000 or Windows XP are being used, whether at the Server or Client end, or

both. It may make initial connection more efficient on Windows 95/98/ME too.

If you are using Windows XP on both the Server and Client PCs it shouldn‘t be necessary to provide it as WideClient should

receive this information automatically in one of WideServer‘s broadcasts.

If you do need to set it, the ServerNode is determined by the specific network adapter being used by the Server. You can get this

most easily by running Flight Simulator with WideServer.dll installed, and then looking at the WideServer.log file (which you will

find in the Modules folder, with the module itself). Near the beginning there should be a line containing

 ServerNode=n.n.n.n.n

where the n‘s are decimal. Copy this part of the line into the [Config] sections in all the Wideclient.ini files you are using for

programs which will connect to this specific server.

Be aware that there have been problems with some network drivers reporting the incorrect ‗ServerNode‘ values to WideServer.

See the trouble shooting section earlier.

RARELY CHANGED PARAMETERS

Port=8002: This controls the port number to be addressed. Only the WideServer running with the same Port number will be addressed by this

WideClient. You can have several WideServers running on a network, each using a different Port number.

Note that you can only have one copy of WideClient in each machine, as its job is to "pretend" to be an FS6IPC.DLL-equipped copy of FS98 so

that FS6IPC-aware applications will use it.

The default of 8002 is chosen only to avoid the two ports (8000 and 8001) used by WidevieW, in my earlier package "WideEFIS".

Port2=9002: This port is used for file transfers only.

Window=43,44,886,589: Don't alter this unless you "lose" the Window! It stores the size and position you last used for the main window.

Visible=Yes: Normally leave this to default. Other values are:

No if you don't want any sign of WideClient (in this case, to terminate use CTRL-ALT-DEL)

Min to start up minimized

Max to start up maximized

OnTop same as ‗Yes‘, but set to stay on top of other windows

OnTopMax same as ‗Max‘, but set to stay on top of other windows

The main use of having a visible WideClient window is for a ButtonScreen, as described fully in the User Guide. Apart from that, a Window

may be needed for applications to ―attach to‖, but there aren‘t many that do. The FS98 EFIS program by Chris Brett is one. You should leave

this parameter to default to ‗Yes‘ for EFIS, then size the WideClient window to fit the EFIS plus FMC windows, arranged nicely side-by-side,

with the control buttons beneath. WideClient will remember the window size and position. (Similar considerations apply to Moving Map. You

can arrange all EFIS and Moving Map windows within WideClient‘s window, and they will all be remembered by their respective programs).

WaitForNewData=500: Network response with new data timeout, in milliseconds. This applies only to requests made for data which is not yet

―registered‖ with the server, as being needed by this client. The client deliberately waits, examining messages coming back from the server, for

up to this number of milliseconds, or until it sees the new data it requested arriving.

A large timeout here helps guarantee that the application will see good data right from the outset (assuming FS is already running and the Server

is able to respond in this time), rather than be supplied with zeroes from WideClient‘s own memory. Once the client knows that the data

requested is registered with the server it no longer waits but services the application from its memory and relies on updates for changes from the

server.

This means that, with a larger timeout, the application may be slightly jerkier initially, but obtains good data. If the slower start is not

acceptable, you can omit the timeout altogether by setting this parameter to 0.

Note that if the connection to the Server is restarted at any time, for any reason, then all the data it was previously receiving is again considered

un-registered, so the new data timeout applies again.

ApplicationDelay=0: A delay inserted into each call to WideClient made by each application program. This value, in milliseconds, applies to

every request made by all your client applications. Since the Server is sending updates for requested data in any case, this timeout is only useful

for limiting the processor time used by the application, to stop it hogging the client PC when there are other programs to run.

Many FS6IPC/FSUIPC client applications are reasonably well behaved, however, and do timeshare well enough, so this timeout can is

defaluted to 0. However, with some applications, if there is not a delay before returning to the application from each of its data requests, then

the loop can be too tight and there may be some real difficulties in accessing other facilities on that PC, moving and sizing windows, and so on.

This should never be a problem on Windows 2000 or XP, but may be so on Windows 98/Me which are not so good at timeslicing.

NetworkTiming=5,1: This gives control over two quite critical periods. Both numbers are times in milliseconds. The first (defaulting to 5)

specifies the minimum time to be given to the Application to allow it to read changes after WideClient has received each new frame. The second

(defaulting to 1) specifies the minimum time to be given to the Network thread to allow new frames to be received and processed before acting

upon each read or write request from the Application.

This is quite a balancing act and needs to be just right to achieve perfectly smooth operation. Ideally the Network thread should receive one

frame which the Application can immediately process, and so on, but in practice frames are like buses, they run in bunches and sometimes not at

all. These numbers allow experimentation with the way this is turned into apparent smoothness.

MaxSendQ=100: This sets a limit on the number of frames awaiting transmission to the Server. If the queue exceeds this number, the action

specified by WhenMaxSendQ is taken.

WhenMaxSendQ=Recon: This specifies what to do if the send queue exceeds the maximum allowed by MaxSendQ. This can be either

―Recon‖ to discard all the frames and reconnect to the Server, effectively starting afresh, or ―Flush‖ which simply discards the pending frames.

Note that if you have a Client reaching the default maximum of 100 you do have something badly wrong. For any session the maximum seen is

logged at the end, when the WideClient program is terminated. Good values are 2–10. You won‘t see less than 2 normally, but a perfect setup

will show a maximum of 2 on all clients.

SendScanTime=10: This sets the minimum time between frames being sent from this Client to the Server, in milliseconds. The default value of

10 will stop the individual data frame upload rate exceeding 100. If you get too much stuttering, or experience delays or reconnections on a

client, it may be that one of the applications is writing values to FS too fast. You can increase the ApplicationDelay (above) but that will slow

down reads as well as writes, or you can increase this value instead.

Priority=3,1,2: There are three threads in WideClient: the main one which is receiving requests for reads and writes from applications, a

Network reception thread, and a Network transmission thread. Normally, the reception thread is run at a high priority with the transmission

thread a little lower, but still higher than the applications. You can change this order here if you like. The three values are all 1, 2 or 3, and give

relative priorities of Applications, Receives, Transmits, in that order—with 1 highest, 3 lowest. If you set them all the same there will be no

priority differences.

PollInterval=2000: The number of milliseconds allowed between each message sent to the Server to confirm that this client is still active. When

there is no other reason to send a message this will merely cycle through the FSUIPC offsets being read as a king of ‗refreshment‘. WideClient

otherwise only sends messages to the Server for Writes to FSUIPC offsets and for Reads of new offsets (new since the last connection or re-

connection).

ResponseTime=18: The number of seconds elapsing with no message arriving from the Server before WideClient decides that the connection is

lost and attempts to re-connect. Note that twice this time is actually allowed until such a timeout has occurred twice. After this the specified

time is used. This initial leniency allows for longer delays at the Server during initialisation, both of FS and all of its attendant applications.

ButtonScanInterval=20: This parameter controls the rate at which WideClient scans EPIC and Windows joystick buttons. GoFlight buttons are

not scanned by WideClient—those are dealt with by the Gfdev.dll. However the parameter is still relevant since if you set this to 0 (zero), it

switches the recognition of buttons off altogether. The units are milliseconds.

ClassInstance=0: You can't normally run WideClient and FS, or two copies of WideClient, in the same PC, as they have

the exact same Window Class. FSUIPC applications cannot differentiate between them. In fact both FS and WideClient prevent more than one

such instance starting in the first place. However, there are two very unusual situations:

(a) You want a WideClient running and talking to a server on another PC, whilst on the same PC as the Client you have a copy of FS running

(possibly linked to the other by WidevieW), or

(b) You want two WideClients talking to different Servers (by different Server Names or Ports).

For these situations, Wideclient allows you to change its Window Class name. For this to be of any use, the applications you are running will

also have to be set to connect to the different Class name—this will not be possible with most standard FSUIPC connecting applications. In this

regard, this facility is rather restricted to those with programming abilities.

To change the Class name used, simply set the parameter "ClassInstance=n" where n is a number in the range 0–99. The Class Name then

becomes "FS98MAINnn"—i.e. the number is appended as two digits, 00–99. If you do this, be aware that most ready-made applications for

FSUIPC will not connect.

Additionally, since version 6.90 of WideClient using a non-zero ClassInstance forces WideClient to use TCP protocol, overriding any selection

you may otherwise make. This is to avoid problems with FSUIPC4's WideServer using broadcast mode for UDP connections.

The [User] Section

Background=: WideClient will display a user-supplied bitmap in its window instead of the featureless grey. This allows suitable

backgrounds for utilities such as EFIS, EFIS98 and Moving Map to be designed. Specify the BMP file to be used by adding this

line into the [User] section of WideClient.ini:

 Background=filename.bmp

The filename can contain the complete path to the file: useful if it isn't stored in the load path.

Run1=, Run2=, … Run9=: These tell WideClient to run the specified programs (specified by their full pathnames), as

WideClient is initialising. For example:

Run1=f:\efis\Efisv2.exe

This would load EFIS Version 2. Other suitable clients are RWX5.EXE (Real Weather 5 by Jeff Wheeler and Steve Halpern), and

Aeroview.Exe (the moving map free on the CDROM with Nick Dargahi‘s book). These are the ones I use and have tested, but any

FS6IPC.DLL using program should run fine. If the program needs command-line parameters, these can be included by enclosing

the whole value in double quotation marks (") so that the spaces needed don‘t cause problems.

Instead of the full pathname to the program, they can instead be the full pathname of a Text file (.txt) . WideClient will read the

first line of that text file and run that to identify the program path and its parameters (if any). This facility can be used in

conjunction with facilities added to Its Your Plane (IYP) in build 222 to allow WideClient to start and stop IYP by KeySend

parameters (as described later, RunKey and CloseKey).

Delay1=¸ Delay2=, … Delay9=: These optionally define delays, in seconds, to be executed after the corresponding Run

parameter, above. Whilst the delay is operating WideClient is sleeping, so it will not attempt to make a connection during this

time. The maximum delay which is set is 60 seconds.

Close1=Yes¸ Close2=Yes, … Close9=Yes: Add these to ask WideClient to close the programs it loaded by Run when

WideClient itself closes or when requested by an appropriate KeySend. This is performed by sending the program‘s Windows a

WM_CLOSE message, so if it ignores these, or has no Windows defined, this won‘t work. To forcibly terminate obstinate

programs, substitute "Kill" for the "Yes", but be aware that this method is the equivalent of using the Windows Task Manager

(Ctrl_Alt_Del) to delete processes. Use it with care. It provides no opportunities at all for the murdered process to do any sort of

tidy up or options saving.

You can also use the keyword "Last" instead of "Yes" or "Kill". Instead of seeking to close all the top level windows of the

application in order, it merely closes the LAST visible one. Since Windows appears to enumerate an applications windows in

reverse order of creation, this should usually find the first one.

Another option, which may be needed with applications which start off as one process (the named EXE in the "Run" line), but

then create another process (i.e. run another EXE) of which, of course, WideClient is then unaware. If it is that new process which

needs closing, WideClient needs to be told its name. You do this by adding the EXE name (or the whole pathname if there's

likely to be any ambiguity), to the Close parameter, after the "Yes", "Kill" or "Last" part.

For example:

 Close1=Kill,"Flightdeck_Companion.exe", or possibly

 Close1=Yes,"Flightdeck_Companion.exe"

for FDC, which seems to be one such application. (Note: it has actually been verified that both of these methods do actually work

on FDC). The outside quotation marks (") are optional, but certainly needed if you want to add any comments to the line.

Wave1=, Wave2=, ... Wave9=

Voice1=, Voice2=, ... Voice9=

Mike1=, Mike2=, ... Mike9=:

[Windows XP only—not Vista, nor Windows 7]

These can be used to change/set the default sound devices before the program defined by the Run1 (etc) parameter is loaded, so

that it uses that sound device. Different programs can thus be automatically set to use different sound devices even where they

offer no such selection mechanism themselves.

The values you set to these parameters are the exact sound device names, which you can obtain by looking at the Windows control

panel Sound applet—they are the names you select among to set defaults.

The three different sound connections you can change are the Wave output sound, the Voice output sound, and the Microphone

input sound. Examples:

 Wave1=Realtek AC97 Audio

 Voice1=Realtek AC97 Audio

 Mike1=USB audio CODEC

RunReady1=, RunReady2=, … RunReady9=: These are identical to the RUN options above, except they are not actioned until

WideClient is actually connected to WideServer.

DelayReady1=¸ DelayReady2=, … DelayReady9=: These optionally define delays, in seconds, to be executed after the

corresponding RunReady parameter, above. Whilst the delay is operating WideClient is actually still running. The maximum

delay which is set is 60 seconds.

CloseReady1=Yes¸ CloseReady2=Yes, … CloseReady9=Yes: Add these to ask WideClient to close the programs it loaded by

RunReady when WideClient itself closes or when requested by an appropriate KeySend. This is performed by sending the

program‘s Windows a WM_CLOSE message, so if it ignores these, or has no Windows defined, this won‘t work. You can use

Kill instead of Yes—see the description and warning under ―Close1 ... ― etc above.

WaveReady1=, WaveReady2=, ... WaveReady9=

VoiceReady1=, VoiceReady2=, ... VoiceReady9=

MikeReady1=, MikeReady2=, ... MikeReady9=:

[Windows XP only—not Vista, nor Windows 7]

These can be used to change/set the default sound devices before the program defined by the RunReady1 (etc) parameter is

loaded. Please see the Wave1= (etc) entries above for more details.

RunKey1=, RunKey2=, … RunKey9=: These are identical to the RUN options above, except they are not actioned

automatically at all, but only when a KeySend request to run them is received. This allows the programs to be loaded under

explicit control from the server. See KeySend, below.

CloseKey1=Yes¸ CloseKey2=Yes, … CloseKey9=Yes: Add these to ask WideClient to close the programs it loaded by RunKey

when WideClient itself closes or when requested by an appropriate KeySend. This is performed by sending the program‘s

Windows a WM_CLOSE message, so if it ignores these, or has no Windows defined, this won‘t work. You can use Kill instead of

Yes—see the description and warning under ―Close1 ... ― etc above.

WaveKey1=, WaveKey2=, ... WaveKey9=

VoiceKey1=, VoiceKey2=, ... VoiceKey9=

MikeKey1=, MikeKey2=, ... MikeKey9=:

[Windows XP only—not Vista, nor Windows 7]

These can be used to change/set the default sound devices before the program defined by the RunKey1 (etc) parameter is loaded.

Please see the Wave1= (etc) entries above for more details.

Show, ShowIf, ShowReady, ShowKey: These enhance the equivalent Run parameters to control how their Windows are

displayed. For instance, Show3 refers to the Run3 program, whilst ShowKey4 refers to the RunKey4 program. The options are:

 Show<id>=<mode> or Show<id>=<delay>,<mode>

where <mode> is one of MAX (for maximised), MIN (minimized), HIDE (hidden). Anything else does a 'restore' (to the window's

default size and state). The <delay> part is a number of seconds to wait after the program is loaded before trying to change the

Window. This is needed for many programs to make sure the correct top-level program window is affected, as many programs

display a banner or initialisation window before the true operational one.

Close=: This parameter can list up to three Windows CLASS names, representing programs that should be closed when

WideClient itself closes. Separate the Class names with commas.

For example, EFIS98‘s CLASS name is TToolWindow97, so you can set WideClient to close EFIS98 automatically when you

close WideClient by the parameter setting:

 Close=TToolWindow97

To obtain Class names is not easy without programmer‘s tools, but the program‘s author can tell you. Class names for some of the

possible Client applications are provided below, in the section on the KeySend feature. Project Magenta class names can be

configured by parameters in the individual module ini files.

The Close parameter provides no facility to distinguish between two or more programs which use the same Windows Class name.

Actions=: This tells the program to create a Menu with the listed commands. Each command, when selected, sends a special

message to WideServer. The first command executes the Action1 line in WideServer's ini file, and so on. Use commas to separate

commands. For example:

Actions=Jet,Prop,Heli

These three menu entries might be used in conjunction with these WideServer.ini parameters:

Action1="C:\EPIC\LOADEPIC FS98JET"

 Action2="C:\EPIC\LOADEPIC FS98PROP"

 Action3="C:\EPIC\LOADEPIC FS98HELI"

thus getting the server to re-load different Epic control programs on request from the client.

Log=Errors+: This is a debugging aid which I may ask you to change if I need more information to help sort out a problem with

application interfacing. The default will create a WideClient.log file in the FS modules folder which contains details of basic

errors but otherwise just some starting and stopping information and (most important for me!) the version number.

Set to ‗Yes‘, this parameter provides a log of all simulator variable read and write calls (and the results) made through

WideClient. This is really only of any use to application developers, so they can see how their program is operating once its

requests have been through WideClient.

Other settings are:

No not recommended as you lose error data

Errors only showing error reports, no other useful stuff

and a range of really heavy logging options (Debug, Debug+, DebugAll, All, AllRx, PartRx) which will tend to only ever be used

under instruction when trying to nail really obstinate problems.

If you do switch on any type full logging (e.g. ‗Yes‘ or any of the ―heavy‖ settings), be sure to keep the session short. The log file

gets very large!

You can also have the full data logging switched by Hot Key: e.g.

Log=K1190

The number after the K here represents Shift >. The value is the Virtual Key number (see one of my FS Controls packages for a

list) plus 1000 for Shift and/or 2000 for Ctrl. The logging state is then shown in the WideClient title bar.

Monitor=: Developers can use this to find out what is happening to any one particular area of the FSUIPC memory area—i.e. the

offsets being written or read by the WideFS applications on this client. The format is:

 Monitor=<offset>,<size>

where the offset is in hexadecimal and the size is a number of bytes in decimal. If you only want to watch one byte, you can omit

the ",<size>" part.

For example

 Monitor=028C,1

This makes WideClient log all Network reads from and writes to this location, the Landing Lights switch.

You can Monitor up to 8 different offset areas. Just list more <offset>,<size> parameters on the same line, thus:

 Monitor=04E0,88,48F0,10,5400,512,5600,256,5B00,128

which means 88 bytes at 0x04E0, 10 bytes at 0x48F0, and so on.

For a full picture you should use the same parameter at the server end too—i.e. in the WideServer.ini file.

Deny=: This parameter can prevent all programs on the current client changing specified areas of the FSUIPC offsets. The format

is:

 Deny=<offset>,<size>

where the offset is in hexadecimal and the size is a number of bytes in decimal. If you only want to watch one byte, you can omit

the ",<size>" part.

For example

 Deny=2EE0,4

This makes WideClient prevent and changes to this location from this client. This one is the Flight Director switch.

You can Deny access to up to 8 different offset areas. Just list more <offset>,<size> parameters on the same line, thus:

 Deny=04E0,88,48F0,10,5400,512,5600,256,5B00,128

which means 88 bytes at 0x04E0, 10 bytes at 0x48F0, and so on.

AllowShutdown=No: Set this to Yes only if you want to allow client programs (or the server‘s ShutdownHotKey) to shut down

this client PC by writing a special value to the IPC interface. (Details for programmers are in the FSUIPC SDK—look for offset

3320).

AllowShutdown=App can be used instead if you just want WideClient itself to close down, leaving the PC itself up and running.

Of course any applications featured in WideClient‘s ―Close‖ parameters (above), will also close.

AllowShutdown=AppOnly is a further variation which leaves WideClient running (awaiting a re-connection from a reloaded FS),

but closes down any applications which were loaded with ―RunReady‖ or ―RunKey‖ parameters and have a ―CloseReady‖ or

―CloseKey‖ entry too. When FS starts up again on the server PC, WideClient will reload the ―RunReady‖ programs (but the

―RunKey‖ programs will await the appropriate KeySend request).

NOTE that there is a related ―CloseApps‖ facility that will perform the AppOnly function if the AllowShutDown parameter is set

to anything other than ‗No‘. This facility can be instigated by a WideServer hot key, or by any application writing a different value

to the IPC interface. Again, the FSUIPC SDK will provide programmers the details.

ShowRxFrameRate=No: Set this to Yes to show the frame rate—i.e. the number of frames per second received from the Server

on this client. In general this will be very low (0 is less than 1, not absolute zero! <G>) when FS is not doing much, and,

hopefully, something near to FS‘s frame rate when things are changing a lot. But this will depend upon the Applications. If there‘s

only one Application and it is only reading the Time of Day (to the nearest second) then this will only change at most once a

second, so the frame rate will hover around 0 or 1 no matter what is going on in FS. Performance summaries are shown at the end

of the Log.

ShowCounts=No: Set to Yes to show the total network Read and Write counts (in bytes) in the WideClient title bar. In general it

is more useful to use the reception frame count instead.

EFISkbfocus=No: [Only suitable for use with the EFIS98 package on the Client]

Set this to Yes if you are using Chris Brett‘s EFIS98 package on this Client, and wish to make the keyboard input mode in EFIS98

operate automatically, whenever the Client window has focus. Make sure EFIS98 is docked: do this after sizing the windows to

suit. You can position them afterwards.

This option saves having to remember to press Shift+Space before selecting options by keyboard short cuts, or entering details

into the FMGC or the Options dialogue. WideClient will do this for you, and will disable keyboard input whenever the Client

window loses focus (e.g. to access some other program).

KeySend: Clients can receive requests from the Server. The requests are simply encoded by a reference number, in the range 1 to

255 inclusive. In the Server PC you use FSUIPC to program these requests. They can be assigned in the Buttons and/or Keys

option pages in FSUIPC. Just find the added FS control called ―KeySend‖ in the drop-down lists. The KeySend reference (1–255)

is entered as a parameter.

This mechanism allows use of recognised buttons (including EPIC, GoFlight, and PFC.DLL connections) and server key presses

to be relayed to Client PCs as KeySend encoded messages. It can also drive specific facilities in WideClient to run and close

programs, or to send PTT on/off requests to Roger Wilco or AVC.

Basically, the idea is simple. To make something happen on a Client, a keypress is usually needed on that client. WideClient can

deliver that keypress using this facility. But the keypress needed at the client cannot be programmed as such on the Server,

because it would be delivered to FS on that PC instead.

To counter this, WideFS implements a special data value, the KeySend reference number (1–255). The number used is not

relevant to anything, it is just an identifier, a reference. When a button or key on the Server is programmed for a KeySend number

‗n‘, that number ‗n‘ is broadcast to all Client PCs. The Client program watches for these. If it sees a KeySend reference number it

has an entry for, it then acts upon it, if not it ignores it. Thus, different Clients can do different things with the same KeySend

message, or the same things with different messages. The flexibility of doing things this way is enormous.

Currently KeySends can, with the specific exceptions dealt with below, only be used to generate Key strokes on the Client PCs.

There are no facilities for mouse movement nor mouse-clicking. Please check Luciano Napolitano‘s site (www.wideview.it) for

programs which handle mouse operations.

KeySend facilities for sending keystrokes to an application (with or without it having focus)

In the simplest form you specify the keyboard actions required for given KeySend reference numbers (1–255 as required) as

shown in the following examples:

 KeySend1=65,9 ; Shift+A

 KeySend2=8,11 ; Shift+Ctrl+Backspace

 KeySend255=112,12 ; Alt+F1

Here the first value determines the main key required. This is a Windows ―virtual keycode‖. A list of these is given in the table in

the Appendix. The second value determines additional shift states needed, as follows

 8 key on its own

 9 Shift +

 10 Control +

 11 Shift + Control +

 12 Alt +

 13 Shift + Alt +

 14 Control + Alt +

 15 Shift + Control + Alt +

Note that not all combinations will work with all keycodes. The values can also be 0–7 instead of 8–15. The addition of 8 here is

merely to provide compatibility with the way key presses are specified in Flight Simulator‘s CFG files.

Use of the Alt key in many combinations is problematic. Try to avoid this key if possible.

Note that all these values operate the keystroke momentarily: i.e. they do a ―key down‖ followed by a ―key up‖. If you want one

KeySend event to press a key and a separate KeySend event to release it, then you will need to alter the shift state above as

follows:

 Shift state + 8 to Press the key

 Shift state + 16 to Release the key

For example

 KeySend1=65,17 ; Shift+A press

 KeySend2=65,25 ; Shift+A release

These parameters make KeySend 1 and 2 press the Shift+A combination for as long as the action in the server need it to. You

would probably program the KeySend entries in WideServer.ini to operate KeySend1 when a button is pressed and KeySend2

when it is released.

Take care when using these more advanced features not to get your client PC in a bit of a mess, with assorted key states stuck on.

To release stuck keys, press them on the client‘s keyboard—the Key UP codes should sort things out.

Directing Key Strokes more precisely

If the application that is to receive the keystroke is not a child window of Flight Simulator (i.e. of WideClient, which is

substituting for FS in this case), the Windows keyboard focus may not allow the assigned keystroke to reach it. In this case you

need to add another parameter, or maybe two, to each KeySend line, identifying the program to receive it.

If the program is one you are having WideClient load, using the Run or RunReady parameters, then the additional parameter can

simply be the name of the parameter you used. For example:

 KeySend1=65,9,Run1

and KeySend1=66,9,RunReady2

http://www.wideview.it/

This is by far the easiest and, usually, the most reliable way. However, if it is a program being run separately then you will need

more information about that program, in particular the program‘s main Window class name, and where there‘s a chance of

confusion, the title for the application window concerned. The next section goes into this in some detail.

Special KeySend facilities to bring a program's Window to the foreground

With effect from version 6.791 of WideClient, you can also use KeySends to bring program windows to the foreground,

selectively. For it to be able to do this the programs must have been loaded by WideClient—by use of one or other of the

Run/RunReady/RunKey parameters.

The format of the parameter to do this is:

 KeySendN=Focus,Run...

where N is the KeySend parameter number as usual, and the "Run..." part is the RunN, RunReadyN, or RunKeyN reference to the

program concerned. For example:

 KeySend2=Focus,RunReady2

CLASS Names

Windows class names either have to be supplied by the author of the program, or obtained by other programs such as the Spy

programs that come with development packages like Microsoft‘s Visual C++. Here are the Class names for some (now rather old)

FS utility applications. When there are more than two programs running with the same Class name, the title (from the title bar) is

needed as well, as an extra parameter.

 FlightDirector98 ThunderRT5Form

 Project Magenta: ThunderRT5Form,"PFD GLASS COCKPIT"

 (but PM modules now have programmable class names—see PM INI files)

 Real Weather 5 ThunderRT5Form

 Aeroview TestClass

For example:

 KeySend1=65,9,ThunderRT5Form,"PFD GLASS COCKPIT" ; Shift+A

 KeySend2=8,11,ThunderRT5Form,"PFD GLASS COCKPIT" ; Shift+Ctrl+Backspace

 KeySend255=112,12,ThunderRT5Form,"PFD GLASS COCKPIT" ; Alt+F1

Note that quotes " " are needed around the Window title when given. They are also needed around the Class name if it contains

any spaces.

Running and stopping programs via KeySend requests

The KeySend facility can also accept any of these keywords after the KeySend<n>=:

RunKeyN, CloseKeyN, RunReadyN, CloseReadyN, RunN, CloseN

This allows you to program KeySends to allow any of the programs, known to WideClient through these keywords (see earlier), to

be started or stopped by key or button press, from anywhere in the system. For the Run variants to work the program must have

been specified by that parameter, for the Close variants to work, that Close parameter must be present with the ―Yes‖ setting.

PTT (push to talk) for Roger Wilco, AVC and TeamSpeak

There are two special forms of the KeySend parameter which are specifically designed to operate Roger Wilco‘s Push To Talk

(PTT) action. They also work on the Advanced Voice Client (AVC)—but not, it seems, on TeamSpeak (more on that later).

These are:

 KeySend<n>=RWon

 KeySend<n>=Rwoff

NOTE THAT YOU NO LONGER NEED TO USE THIS METHOD PROVIDED YOUR FSUIPC IS 3.50 OR LATER

The standard FSUIPC controls ―PTT Transmit On and ―PTT Transmit Off‖ now perform the functions automatically whether

local to FS or on a WideFS client. The information given here is still correct but is here for completeness only.

Just select appropriate KeySend numbers instead of <n>, and define matching KeySend parameters for your PTT buttons in the

FSUIPC Buttons programming options. So, if you define these lines in the WideClient.ini file:

KeySend1=Rwon

KeySend2=Rwoff

Then simply define KeySends in the FSUIPC Buttons page to do the same thing. To do this, go to FSUIPC Options, find the

Buttons page, press your PTT button. Now look in the FS controls drop-down list for ―KeySend‖ and then set the parameter for

the KeySend control to the KeySend number. In this case, you would assign the button or key press the KeySend control and

parameter = 1 (to do Rwon), and the key button or key release the KeySend control and parameter = 2 (to do Rwoff). The

numbers tie up the KeySend controls to the matching parameters in the WideClient.ini file.

This works well with Roger Wilco Mark 1 and Mark 1c, and with all versions of AVC as far as I know. It should be okay with

other versions of RW, but it hasn‘t been tested with them.

TeamSpeak is different. It doesn‘t accept the direct messages WideClient uses for RW and AVC. But it can be made to work as

follows. [Thanks are due to Lee Glover for helping work this out]

Choose a single unadorned key for the PTT operation from the list above. By ―unadorned‖ I mean it must have no shifts – i.e. no

shift, control or ALT. It also needs to be a Key which won‘t mess up any other program you have running on the client, because

TeamSpeak does not swallow the key, it simply acts on it and lets it pass! A suitable key might, for instance, be ESCape, or F12.

Let‘s take F12 as the example:

 KeySend1=123,16 ; Press F12

 KeySend2=123,24 ; Release F12

Now set UseSendInput=Yes (this parameter is described below).

Program the PTT button in FSUIPC, as described above. Operate the PTT and assign it in TeamSpeak. That‘s it.

PostKeys=No: Normally all KeySend operations are performed using keyboard playback facilities in Windows—or SendInput if

that options is selected. These are generally more reliable and have the advantage of reproducing exactly the same sequence of

keyboard-related messages that would occur if the real keys were being pressed. However, they do seem to have a problem with

keyboard focus, and, whilst WideClient does attempt to change focus to the target window if it doesn‘t already have it, this can

sometimes cause problems, resulting in missed or ignored keypresses.

If you have the target window class name, as described above, or you know that the application docks itself as a child of FS (and

so WideClient), you can tell WideClient to Post the key presses instead of playing them back like a recording. This needs no focus

changing, and works, provided that you get the Window class name right, that it is unique, and that the target program is happily

processing WM_KEYDOWN or KEYUP messages and doesn't care about WM_CHAR messages or the timing relationships

between all these.

To post key presses just set PostKeys=Yes. This works well with Project Magenta's PFD displays, and probably also the MCP.

UseSendInput=No: If this is set to Yes, then for all undirected KeySend key presses, WideClient uses the Windows SendInput

method. This cannot be directed—whichever program has the focus at the time will receive the keystrokes. But it has the

advantage that it can provide something that can be detected by programs using keyboard scanning rather than processing

Windows messages.

Note that, even if this is set to yes, all directed KeySends will still use record-playback or message posting.

SendKeyPresses=No: [Only for use when running FS2000 (or later), or CFS2, under Windows 98/ME/2000/XP on the Server

PC]. If you set this to Yes, then any non-system key presses (i.e. anything not including the ALT key) received by WideClient will

be relayed to FSUIPC and thence to FS/CFS2. This has limited uses these days. For Wideclient to see the key presses it must have

the keyboard focus. THERE IS NOW A BETTER OPTION! See the next section for programming key presses on the Client to

operate ―virtual buttons‖ on the Server.

ButtonKeys: making use of FSUIPC’s virtual buttons facilities

FSUIPC offers facilities not only for programming real buttons and switches, but also up to 288 ―virtual buttons‖, represented by

bits in part of its array of offsets. These 288 buttons are regarded, like real buttons, as being 32 buttons, numbered 0 to 31, on each

―joystick‖, with nine such ―virtual joysticks‖ numbered 64 to 72.

WideClient provides facilities, using the built-in Windows ―hot key‖ facilities, to convert trapped key presses into changes in

FSUIPCs range of virtual button offsets. The effectively allows any controls, keypresses or other actions supported by FSUIPC on

the Server PC to be instigated by key presses from the clients.

This obviously has major attractions for those using keyboard encoders in their cockpits and wishing to attach these to Networked

PCs. Because the key presses are trapped using the standard Windows hot key facilities, their use is independent of the current

keyboard focus. The only restrictions are on the range of such keypress combinations which are valid, and the fact that each such

hot key is only validly claimed by one application, and once in that too.

To use these facilities, add the section [ButtonKeys] to the WideClient.ini file. Then, for each virtual button you want to operate,

add a line in the format:

 Tn=<keycode>,<shifts>

where n is the virtual button number (in the range 0–287): 0 being Joystick 64 button 0, and 287 being Joystick 72 button 31

(remember, each joystick has 32 buttons).

<keycode> is the usual virtual keycode—see the list in the Appendix, below. Note that not all of them are usable as Windows Hot

Keys. If you provide an invalid one (or one already in use here or in other programs) the line will fail. In this case the WideClient

LOG file will contain an error message identifying the line in error.

<shifts> are:

 8 for no shift keys, just the plain key

 +1 for shift

 +2 for control

 +4 for ALT

 +32 for ―Win‖ (the Windows key)

So, for example, the shifts value for Ctrl+Shft would be 8+1+2 = 11.

You should note that these are similar to the shift values used elsewhere in WideFs, but they are not the same. The differences are

due to Windows restrictions on its Hot Key facilities.

Note that with this format of entry, when the Hot Key is pressed, the relevant virtual button is toggled: i.e. if not set, it is set, and

vice versa. From the point of view of programming in FSUIPC this would look like a "Press" on the first press, and a "Release" on

the second press, and so on, alternately. This seems to be the most flexible, as Windows Hot Keys do not supply any separate

‗press‘ and ‗release‘ indications. However, if you specifically want to Press a button with one keystroke and Release it with

another, use these formats:

 Pn=<keycode>,<shifts> to Press the virtual button

 Rn=<keycode>,<shifts> to Release the virtual button

[Note that in pre-releases, before 6.45, WideClient used these parameters with no T, P, or R prefix before the button number.

Don’t worry—if you already have made use of these facilities, WideClient will automatically convert those lines to the T format.]

Appendix: Windows Keycodes

Here are the keycodes which are usable in several of the WideFS parameters. This is a complete list, but they may not all be

usable in each context.

8 Backspace

9 Tab

12 NumPad 5 (NumLock OFF)

13 Enter

19 Pause

32 Space bar

33 Page Up

34 Page Down

35 End

36 Home

37 Left arrow

38 Up arrow

39 Right arrow

40 Down arrow

45 Insert

46 Delete

48 0 on main keyboard

49 1 on main keyboard

50 2 on main keyboard

51 3 on main keyboard

52 4 on main keyboard

53 5 on main keyboard

54 6 on main keyboard

55 7 on main keyboard

56 8 on main keyboard

57 9 on main keyboard

65 A

66 B

67 C

68 D

69 E

70 F

71 G

 72 H

 73 I

 74 J

 75 K

76 L

77 M

78 N

79 O

80 P

81 Q

82 R

83 S

84 T

85 U

86 V

87 W

88 X

89 Y

90 Z

96 NumPad 0 (NumLock ON)

97 NumPad 1 (NumLock ON)

98 NumPad 2 (NumLock ON)

99 NumPad 3 (NumLock ON)

100 NumPad 4 (NumLock ON)

101 NumPad 5 (NumLock ON)

102 NumPad 6 (NumLock ON)

103 NumPad 7 (NumLock ON)

104 NumPad 8 (NumLock ON)

105 NumPad 9 (NumLock ON)

106 NumPad *

107 NumPad +

109 NumPad -

110 NumPad .

111 NumPad /

112 F1

113 F2

114 F3

115 F4

116 F5

117 F6

118 F7

 119 F8

 120 F9

 121 F10

 122 F11

 123 F12

 124 F13

 125 F14

 126 F15

 127 F16

 128 F17

 129 F18

 130 F19

 131 F20

 132 F21

 133 F22

 134 F23

 135 NumPad Enter or F24?

 144 NumLock

 145 ScrollLock

160 Left Shift **

161 Right shift **

162 Left Control **

163 Right control **

164 Left ‗Menu‘ **

165 Right ‗Menu‘

 186 ; : Key*

 187 = + Key*

 188 , < Key*

 189 - _ Key*

 190 . > Key*

 191 / ? Key*

 192 ' @ Key*

 219 [{ Key*

 220 \ | Key*

 221] } Key*

 222 # ~ Key*

 223 ` ¬ ¦ Key*

* These keys will vary from keyboard to keyboard. The graphics indicated are those shown on my UK keyboard. It is possible that keys in the
same relative position on the keyboard will respond similarly, so here is a positional description for those of you without UK keyboards. This list is
in left-to-right, top down order, scanning the keyboard:

 223 ` ¬ ¦ is top left, just left of the main keyboard 1 key
 189 - _ is also in the top row, just to the right of the 0 key
 187 = + is to the right of 189
 219 [{ is in the 2nd row down, to the right of the alpha keys.
 221]} is to the right of 219
 186 ; : is in the 3rd row down, to the right of the alpha keys.
 192 ' @ is to the right of 186
 222 # ~ is to the right of 192 (tucked in with the Enter key)
 220 \ | is in the 4th row down, to the left of all the alpha keys
 188 , < is also in the 4th row down, to the right of the alpha keys
 190 . > is to the right of 188
 191 / ? is to the right of 190

** These keys may or may not work, depending on the method used and the target program.

Published by Peter L. Dowson, 11th February 2012

