
FSUIPC for Programmers

By Pete Dowson, Pete Dowson's Support Forum

[Please also see the FSUIPC4 Offsets Status document for use with FSX]

This document has been updated for Version 3.999 and later of FSUIPC3.

First, a word of clarification for programmers wanting to write applications to interface to FS2000,

FS2002 or FS2004: FSUIPC isn't a DLL you can use directly: it is an FS DLL—i.e. it is part of the FS

process, not part of yours. It provides data through a complicated process called "Inter-Process

Communication", hence the name (IPC).

The interface it uses is not mine. It was invented by Adam Szofran in his FS6IPC module, several years ago.

However, you should find all the assistance and information you need to use it in the FSUIPC Developer Kit, of

which this document is now a part. The data you need has been split into separate ZIPs: for C/C++ programmers, for

Delphi programmers (contributed by Pelle Liljendal with some extra work by Chris Brett), for Visual Basic

programmers (contributed by Chris Brett with some extra work by Enrico Schiratti)—even one for ASM

programmers, using MASM32 (contributed by Andrea Brunori). Many thanks to Andrea, Pelle, Chris, Enrico, and

Alan Dyer (for the Borland C++ example) for making this Kit so much more useful for so many more programmers.

The offsets for positional data within FS98‘s GLOBALs are published in some of files you can find on the Internet,

but I have tried to collate all the information I know about these here. Please refer to the table later in this document.

If you are not sure of any of this, or really want to ―see‖ what is going on, you could try using Pelle Liljendal‘s

excellent ―FSInterrogate2‖ package to investigate variables yourself (this package is included with this Kit). I have

supplied a project file for FSInterrogate2 called ―FSUIPC.fsi‖ which basically contains the same information as in

both the tables that appear later as well as updates specifically for FSX.

Access to FS2000, FS2002 and FS2004 Variables

Since version 1.94 of FSUIPC, a large number of the additional variables provided by FS2000 and documented in

Microsoft‘s Panels SDK (plus some that aren‘t) can be accessed by using a special range of new ―offsets‖ supported

by extended mapping in FSUIPC, in the range 2000 – 3FFF hex. Some, but by no means all, of these are also mapped

for access in FS2002 and (fewer still) in FS2004.

There is a Table later in this document listing these variables, by the same names as used in the Microsoft toolkit. No

other information is available for these at present, but note that there are some absurdities. This is not a fault in the

mapping within FSUIPC, but in the allocations of these named variables all to a value always obtained from one

place in FS. I believe that these values, like many of the others, are never actually set to anything useful, so it

probably doesn‘t matter.

Note that all of these are supported for both reading and writing, but I haven't the foggiest idea what would happen if

they are written to—such writes could have an effect or not, and that effect could be quite drastic, like crashing FS.

The odd offsets chosen are very specifically designed to make the mapping to the actual locations in FS2000

efficient. For example, the original values in the 2xxx range are actually in the SIM1.SIM module (SIM1.DLL in

FS2002), and most (but not all) of those in the 3xxx range are in the PANELS.DLL module, but the addresses are

encoded in a way allowing me to calculate the pointers quickly. They are not really "offsets" as such. Unfortunately

the same efficiency has not always carried forward to FS2002 and even less to FS2004. Such is life. It is a good job

processors are getting faster! <G>

There are some important omissions. These are the token variables which do not appear to exist in specific locations,

but which are calculated or derived in some way by procedure calls. I have not mapped these as regular access to

such routines would be very inefficient, and it would be impossible to do an equivalent "write" for each "read"

possibility. If specific items are needed from those which are omitted I would have to consider them on an individual

basis, as there is no generic solution.

http://www.forums.simflight.com/dowson
http://www.forums.simflight.com/dowson
http://www.forums.simflight.com/dowson

FS2002/4 A.I. Traffic Data (for TCAS applications and similar)

Applications interfacing to FSUIPC can obtain data on the AI traffic generated in FS2002 and FS2004. This is

suitable for a mapping or TCAS implementation.

The offset area from D000 to FFFF inclusive is reserved for this. It is nearly all read-only.

There are four tables, two main ones at E000 to EFFF for ground aircraft and F000 to FFFF for airborne aircraft, plus

two smaller additional ones for FS2004 only at D000 and D800 respectively. There are 'N' slots available for up to

'N' A.I. aircraft in each table. At present N is equal to 96, but this may change if more or less data is found to be

required. The N slots start at offsets E080, D040 (ground) and F080, D840 (airborne) respectively. The 128 bytes

before the main tables are used for housekeeping, the 64 bytes before the FS2004 add-on tables are currently

reserved.

Each main table slot is 40 bytes in length, and contains data as follows (C terms used):

typedef struct _TCAS_DATA

{ DWORD id; // 0 = empty, otherwise this is an FS-generated ID.

 (Do not use this for anything other than checking if the slot is empty or used—it may be re-

used for other things at a later date).

 float lat; // 32-bit float, in degrees, –ve = South

 float lon; // 32-bit float, in degrees, –ve = West

 float alt; // 32-bit float, in feet

 WORD hdg; // 16-bits. Heading. Usual 360 degrees == 65536 format.

 // Note that this is degrees TRUE, not MAG

 WORD gs; // 16-bits. Knots Ground Speed

 short vs; // 16-bits, signed feet per minute V/S

 char idATC[15]; // Zero terminated string identifying the aircraft. By default this is:

 // Airline & Flight Number, or Tail number

 // For Tail number, if more than 14 chars you get the *LAST* 14

 // Airline name is truncated to allow whole flight number to be included

 BYTE bState; // Zero in FS2002, a status indication in FS2004—see list below.

 WORD com1; // the COM1 frequency set in the AI aircraft‘s radio. (0Xaabb as in 1aa.bb)

 // NOTE that since FSUIPC 3.60, in FS2004 this is set to 0x9999 whilst the aircraft

 // is in ―SLEW‖ mode rather than normal flight mode.

} TCAS_DATA;

Note that the format above, with the COM1 frequency, came into operation with FSUIPC version 2.861.

The ―bState‖ value is new for FS2004. When non-zero it gives the current status of the AI aircraft, as follows:

0x80 128 Initialising

0x81 129 Sleeping

0x82 130 Filing flight plan

0x83 131 Obtaining clearance

0x84 132 Pushback (back?)

0x85 133 Pushback (turn?)

0x86 134 Starting up

0x87 135 Preparing to taxi

0x88 136 Taxiing out

0x89 137 Take off (prep/wait?)

0x8A 138 Taking off

0x8B 139 Departing

0x8C 140 Enroute

0x8D 141 In the pattern

0x8E 142 Landing

0x8F 143 Rolling out

0x90 144 Going around

0x91 145 Taxiing in

0x92 146 Shutting down

Each FS2004 additional table slot is 20 bytes in length, and contains data as follows (C terms used):

typedef struct _TCAS_DATA2

{ DWORD key; // This is the flight identifier Key (usually negative, as in 0xFFFFxxxx) which can be

used to identify the flight in the Traffic file. It is not guaranteed to be unique except in one traffic

File. [Note: this is not available in FSX and is used differently!]

 WORD file; // This is a file Id, to distinguish between multiple traffic files. The default FS2004 Traffic

File has an Id of 14. [Note: this is not available in FSX!]

 short sPitch; // Aircraft pitch in degrees * 65536 / 360 (Also available in FS2002)

 char chICAO[4]; // Departure airport ICAO Identifier

 char chICAO[4]; // Arrival airport ICAO identifier

 BYTE runway; // 0 if not assigned for take-off or landing. Else 1-36, or one of 37=N, 38=NE, 39=E,

40=SE, 41=S, 42=SW, 43=W, 44=NW

 BYTE runway_des; // 0 or runway designator: 1=L, 2=R, 3=C, 4=W (water)

 short sBank; // Aircraft bank in degrees * 65536 / 360 (Also available in FS2002)

} TCAS_DATA2;

Note that this data came into operation with FSUIPC version 3.113 (pich and bank 3.471). On FS versions before

FS2004 this area will be all zero exceptin the pitch and bank. Each 20 byte slot in the table starting at D040 is related

to the 40 byte slot in the corresponding position in the table starting at E080. Similar considerations apply to D840

and F080. Consequently, if you have the offset of a desired main TCAS slot, the additional slot offset is obtained as

follows:

 DWORD Add_Offset = 0xD000 + ((Main_Offset – 0xE000) / 2);

But do not try to do it the other way, as the data in the additional tables is not guaranteed to be valid for any invalid

or unused main slot.

There is an option in the FSUIPC.INI file [General] section to select the contents for the ATC id string. For example,

you can restrict it to tail numbers only, so they match those displayed in FS2002's windows. This option is:

 TCASid=<option>

Where <option> is one of these:

 Flight Gives airline+flight number, or tail number if no airline (this is the default)

 Tail Gives only tail numbers

 Type Gives the ATC type (up to first 15 characters)

 Type+ Gives up to 11 characters of the ATC type, followed by the last 3 digits of the Tail number

 Title Gives up to 15 characters from the aircraft Title (in the AIRCRAFT.CFG file)

 Model Gives the ATC model (up to first 15 characters)

The important parts of the housekeeping area are as follows:

E000 or F000 WORD this gives the size of each slot (currently 40)

E002 or F002 WORD maximum number of slots which will be used (N=96)

E004 or F004 WORD number of slots used so far (keeps increasing, never decreases)

E006 or F006 WORD changes count: incremented every time any slot is changed

E008 or F008 BYTE slotChanges[]: an array of N bytes, each one being incremented when

relevant slot is changed

E068 or F068 BYTE[8] option settings (separately for Ground E068, Airborne F068). See

below.

E07E or F07E WORD the FSUIPC offset for the slot with the nearest aircraft to the user

aircraft (on the ground E07E, airborne F07E).

You can use the two fields indicating changes to reduce demands across the FSUIPC interface, re-reading only slots

which have changed. However, if your application normally runs under WideFS this isn't really much of a saving.

Note that the data is not updated in strict real time, but on a scanning basis, to avoid any adverse affects on FS

performance. The default scan is 10% of all AI aircraft (whether ground or airborne) on each FS frame, but this can

be adjusted using the TrafficScanPerFrame parameter in the FSUIPC.INI file. If you are providing a real-time airport

movement display like that provided by TrafficBoard you may want your users to increase this to 100% but tell them

watch out for FS performance degradation. 100% seems okay on reasonably fast PCs.

Only aircraft within a certain range of the user aircraft are included. For airborne aircraft this range can be set by the

user (or by program), and can be unlimited but defaults to 40nm. For ground aircraft the range is 3 nm if the user

aircraft is on the ground, 6 nm if the user aircraft is airborne, but both can be temporarily changed by program.

Once the slots are all used, additional aircraft will be range-checked. If they are nearer than others in the table then

the furthest ones will be removed to make room. There is an option for inactive (sleeping or initialising) ground

aircraft to be treated as more distant than active aircraft so that they get removed from the table first.

Options settings

The 8 bytes at offsets E068 and F068 independently contain the current option settings for Ground (E068) and

Airborne (F068) aircraft. They are used as follows:

Byte 0 Range in nm (0 = unlimited). For ground, this is the range when the user aircraft is airborne.

Defaults are 40nm (airborne), 6nm (Ground)

Byte 1 Range in nm (0 = unlimited) for Ground aircraft only, when the User aircraft is also on the ground.

Default is 3 nm.

Byte 2 The TCASid option setting, thus:

 0 = Tail number

 1 = Airline + Flight number

 2 = Type

 3 = Title

 4 = Type + last 3 digits or tail number

 5 = Model

Byte 3 = 0 normally, giving preference to nearer aircraft when the table is full

  0 to give preference to active aircraft [FS2004 and later]. This is only applicable to ground

traffic, and an aircraft is considered inactive if it is in states 80 or 81 (initialising or sleeping).

Bytes 4–7 Reserved.

Normally most of these options will be as set by the user via the FSUIPC options dialogue or INI file. Applications

can change them by writing to these bytes, independently for ground and airborne traffic. However, FSUIPC will

automatically re-instate the user‘s settings in approximately 20 seconds after the last write to any one of these bytes

(airborne or ground). If an application wants to continue with changed settings it must re-write that changed setting at

regular intervals. I would suggest using an interval of no more than 5 seconds in order to allow for delays when

Networking is being used or FS is under other loads.

Detecting runways in use

An extra facility is provided on FS2004 which allows applications a better chance of detecting the runways in use at

any selected airport in range (i.e. within 85nm or so of the user aircraft). The Weatherset2 program provided with

FSUIPC makes use of this to show any runways currently assigned when AI traffic is active at a weather station

selected by ICAO code.

This is the interface for this:

D000 32-bit signature (see below)

D004 4 character ICAO of airport

D008 32-bit timestamp

D00C 4 bytes giving up to 2 departure runways, format: Number (1 byte), Designator (1 byte)

D010 4 bytes giving up to 2 arrival runways, format: Number (1byte), Designator (1 byte)

Runway numbers: 1–36 plus 37=N, 38=Ne, 39=E, 40=Se, 41=S, 42=Sw, 43=W, 44=Nw

Designators: 0=none, 1=L, 2=R, 3=C, 4=W

Procedure:

1. Write your signature value (generated by your program, to prevent simultaneous access by others), and the ICAO

at the same time. If you use separate writes, write the ICAO first, but use one FSUIPC_Process call.

2. Read the timestamp. This is best done in the same FSUIPC_Process call as the writes.

3. Read the ICAO, timestamp and 8 bytes of runway details until the timestamp changes (or until you time-out).

Then check that the ICAO you read is the one you want. If so, then the runway bytes are either zero (if there

aren't any known) or they are filled in for you.

4. Write zero to the signature to free the interface for others. If you don't do this, FSUIPC will clear it in any case

within about 12-15 seconds of action 1 above.

Notes:

The runways are gleaned from the data detailed earlier, in the new tables at D040 and D840, but FSUIPC is here

looking through ALL the traffic, i.e. all traffic within FS‘s own 80–90nm radius. It is not restricted it by the user-set

radius, nor the smaller ground limit.

However, and this is an important point, it only scans them for one iteration. When it sees your request it starts

looking next time is restarts a complete scan, and finishes next time it needs to start a scan. This has

two implications:

(a) If there doesn‘t happen to be any flights with allocated runways at this time, you won't get any listed. FSUIPC

does not build up a ‗memory‘ of runways allocated.

(b) The time taken between asking for the data and getting it will vary. It may be up to two scan times (because it

only starts looking at the start of a scan), plus the normal timing overheads you might get, say, with

process switching and WideFS use. Note that one complete scan can take many FS frames—this is dependent

upon the percentage traffic scanned on each frame, which defaults to 10%

Reading full AI Traffic identity strings

The offset area at D000 can also be used to read full AI aircraft data strings. To do this, proceed as follows:

1. Write the selected command, from list below, to D004 (32-bit DWORD)

2. Read the timestamp at D008 (32-bit DWORD)

3. Write the AI id (from the TCAS table, see earlier) to D00C (32-bit DWORD)

4. Write a signature to D000 (32-bit DWORD)

It is probably best to do all that in one FSUIPC Process call—in recent versions of WideFS the read should be

separated out for you in any case. The order isn't important except that you must write the signature last.

If you want to do another within 14 seconds, use the same signature. Use a signature of zero to allow anyone to do the

same thing at the same time, but then be aware that your data may not be what you asked for.

5. Wait till the timestamp in D008 changes.

6. Read string result (up to 48 bytes including terminating zero) from D010.

The command values available are:

1 = Tail Number

2 = Airline name + Flight number

3 = ATC aircraft type, plus ATC aircraft model *

4 = Aircraft title

5 = ATC aircraft type + last 3 digits of tail number

* The aircraft type is one zero-terminated string, and the model is another, following immediately. If either are

missing you‘ll still get the null string (i.e. just the zero terminator).

Except for the last case where 3 digits are extracted deliberately (in accordance with ATC practice), none of these

strings are likely to be abbreviated, except perhaps any long Aircraft Titles. In other words don't expect the string

read in command 2 to be the same as the 14 character version in the TCAS tables—though the beginning and end will

be, of course.

TCAS Data from External Programs

FSUIPC can accept data to be placed into the TCAS table (airborne only), as described above, from programs

interfacing via IPC. This can be used to supply MultiPlayer aircraft data, for instance. [NOTE the word “data”. This

is simply a data passing facility. It is NOT a replacement for the FS multiplayer interface and does NOT generate

aircraft!]

To do this simply write (in one IPC block, i.e. one call to FSUIPC_Write) a TCAS_DATA structure to offset

0x1F80. Note that this address actually goes somewhere different internally. You cannot read back what you have

written here.

You can add more writes to the same (or other) offsets before actually sending them (e.g. via FSUIPC_Process). The

only important thing is that the whole TCAS_DATA structure is written in one block, with the length obviously set to

sizeof(TCAS_DATA)—or, better, the size read from 0xF000.

The data this structure should contain is as follows:

id Any id number UNIQUE to all aircraft you supply. It does not have to be unique to the AI aircraft.

FSUIPC keeps an internal flag to distinguish the two types. [Note that if in the future this field is re-

used for other indications, FSUIPC may have to adjust the value supplied].

lat, lon, alt, hdg, gs, vs, com1

As possible: all would be good, but obviously a minimum of lat/lon/alt.

idATC Any string of up to 14 chars (or 15 if no ―state‖ information is needed), plus a zero terminator, to

identify the aircraft. This doesn't need to be unique but it could be rather confusing to the user if it

isn't.

To erase an aircraft provide the specific id for that entry, and set the idATC field to null (i.e. zero length string, just a

zero).

In any case, FSUIPC will automatically erase any externally supplied aircraft after about 8–12 seconds if it receives

no further updates in that time. Even if the aircraft is static you'll need to supply updates for it regularly.

Apart from the user-adjustable range, which is applied, FSUIPC is not performing any filtering for these aircraft—i.e.

you can include aircraft on the ground if required. However, once the airborne TCAS table is full (current capacity

96) whether with AI aircraft, MP aircraft, or a mixture, no others will be accepted until slots become free. So in this

sense slot management is up to you.

Path reading mechanism

FSUIPC provides a generic method of reading string data, primarily long pathnames, based around writing requests

to specific offsets and reading results in others. The offsets used are 0FF0 to 10FF inclusive. (These were part of FS‘s

Globals.DLL but don‘t appear to have been useful for anything in years so they are being grabbed for this).

The recommended procedure for using this facility is as follows (refer to the extensive notes below for a detailed

explanation of each step and the data values needed):

1. Generate an initial (random?) signature value (DWORD). (This should be done once oncly, somewhere in your

program initialisation probably).

Each time you want to use the facility:

2. FSUIPC Read the DWORD signature flag at 0FF0—see (1) below.

3. FSUIPC Read the DWORD timestamp at 0FFC

4. FSUIPC Write the command details (offsets 0FF4, 0FF6, 0FF8, as applicable)—see (2) below.

5. FSUIPC Write your signature value to 0FF0—see (2) also

6. FSUIPC Process call.

Explanation so far: If another program is already using the facility then the signature read from 0FF0 will not

be zero, and, unless by coincidence your signature is the same as the other‘s, the write will fail to cause your

command to execute. That‘s safe and we deal with that in the next few steps. But by combining this check with

the attempt to execute the command, all in one FSUIPC Process call, we make it ‗atomic‘, in the sense that

another program cannot get in and ‗steal‘ the facility between you checking 0FF0 and writing your own data.

This, in fact, is the only ‗foolproof‘ method!

7. Check the value read from 0FF0. If this is zero, your command will have been accepted! Skip to step 9.

8. On the next time interval, or after processing Windows messages (usual clever Windows programming), return

to step 2 above for another try. (Best make a time limit on how long you do this for, then skip to step in any

case, hoping that the other program wanted the same as you).

9. Increment your signature, so that next time you don‘t ‗accidentally‘ get accepted even with 0FF0 signalling an

active user—if the active user is your program, your command will be executed even though you think it isn‘t.

10. FSUIPC Read the DWORD timestamp at 0FFC—see (3) below

11. FSUIPC Process. Check if the new timestamp value is different from the one read above. If so, skip to step 12.

Otherwise, on the next time interval, or after processing Windows messages (usual clever Windows

programming), return to step 10. Best place a sensible time limit on this—500 mSecs or so should cover all

eventualities, but it depends on your application.

12. Read the data you asked for at offset 1000—still (3) below

Okay, that’s it!

(1) See if FSUIPC can accept a path request:

Read DWORD at 0FF0. If this is zero, go ahead. If it is non-zero, there is an active request. If you know this to have

come from your program, then go ahead using the same signature as before. If the previous request was made using a

different signature, then the system is locked for up to 8 seconds to allow the previous result to be read.

(2) To execute the request

In one FSUIPC_Process call do the following:

Read the DWORD at 0FFC. This contains a ―timestamp‖ indicating changes to the path read area. You need to read

this first so you can see when it changes.

Write the Command WORD (16 bit) to 0FF4.

The only commands available at present are:

1 Read default Flight path [all FS versions]

2 Read AI traffic pathname for specified AI aircraft (see parameter) [FS2004 only]

3 Read filename (no path) of the last saved Flight (FLT) file. (Use the counter of flights

saved, see offset 3BD2, to determine when this has changed).

[NOTE: since version 3.47 of FSUIPC, the filename of the last saved flight has also been

readable directly at offset 0400, so this option is really only retained for backward

compatibility. New programs should refer to offset 0400].

Write the Command Option Flags WORD (16 bit) to 0FF6.

Options are by setting individual flags in this word. Set zero for defaults. The only option available at present is:

Bit 0 (2^0) Provide UNC path (i.e. network-usable) if the path is not within the FS installed path.

This won‘t work if the drive or at least some of the path is not shared for Network

access.

For FS sub-folders this option will make no difference. You can differentiate different

path types as follows:

2
nd

 character = : means it is a local full path

1
st
 & 2

nd
 characters = \\ means it is a UNC full path

else it is a sub-path within the FS folder (UNC path available elsewhere)

This option bit is ignored for command 3.

Bit 1 (2^1) For command 3 (reading FLT filename) only:

A value of 0 for this flag allows FSUIPC to overwrite the previous Flight name

immediately, provided there is no other command pending for this path reading

mechanism. When it does so it will set flag bit 2 (2^2) and update the timestamp. Using

this method for reading flight filenames is fast but you do run a risk of missing a FLT

name when they are so close you don't read one before the other.

If this bit is set to 1, it prevents FSUIPC providing a new Flight name if bit 2^2 = 1 (in

other words it has already written one). With this method you need to read the FLT name

then clear bit 2^2 (i.e. write just 2 to 0FF6) to allow the next FLT name to be provided. If

there is a new one already, it will be provided immediately and the 2^2 bit will again be

set.

Bit 2 (2^2) For command 3 (reading FLT filename) only:

 This flag is set by FSUIPC when a new FLT filename is made available in offset 1000 ff.

If this bit is still set when the next FLT file is saved, it will only overwrite the previous one

in 1000 ff if flag bit 1 (2^1 above) is cleared.

If applicable, write the DWORD parameter to 0FF8. At present this is only needed for AI traffic pathnames. The

value needed here is the DWORD ―id‖ field from the TCAS table.

Write a non-zero signature to 0FF0. This prevents others interfering with your request until you've had time to read

the results. FSUIPC clears down the request about 8 seconds after this Write is received. Successive requests within

the 8 seconds are accepted but only if the same signature is used. You cannot read the signature last used.

Note that the Write to 0FF0 is the activator. Only at that point is the command and parameter accessed and used. For

safety you should use FSUIPC_Write(s) for the command and parameter then the FSUIPC_Write for the signature.

You can, if you wish, write all 12 bytes in one FSUIPC_Write, as the total write is done before the signature is

checked.

 (3) To read the results

Wait for the DWORD timestamp at 0FFC to change. This will happen as soon as FSUIPC sees your Process call

(the request is executed immediately, not scheduled for the next FS frame—I am hoping this isn't needed in this case),

but if you are running on WideFS you have to allow turn-round time.

For full safety, you may actually want to read the 12 bytes from 0FF4, and check that the values for the Command

and Parameters are yours—if you found the DWORD at 0FF0 was non-zero and assumed this was from your request,

this would be a way of verifying that. You can include the 12 byte read in the same process as the Command write,

provided it is later, as the command will be accepted or rejected as soon as FSUIPC sees the Signature write.

When 0FFC has been updated, the 256 bytes at offset 1000 will contain the path/filename as an ASCII zero-

terminated string if the request was successful, or a null string (i.e. first byte = 0) if it failed for any reason.

Note that the default user Flight path will only be a full path if it is not within the FS folder. If the string does not

begin with a drive letter (x:)—i.e. the second character is not a colon—then the path is a sub-folder in the main FS

path. This applies to FS2002 and before.

Similar considerations apply to the AI Traffic file path. This gives all the details, right to the filename and file type,

but the path is within the FS folder if no drive details are given. In other words, the entry is similar to those in the

SCENERY.CFG file, from which they presumably derive. (See the way FSUIPC logs Traffic file data).

Weather (and other) Data for Adventures [Not applicable to FS2004]

Since version 1.55 of FSUIPC, the ―PatchWeatherToADV=Yes‖ facility (defaulted on) has provided weather data

to adventures in FS2000 (and now FS2002). This data is directly through the same variables as used in FS98, so,

apart from some minor extensions (more of which below), they only cater for that subset of FS2000/2002 weather

which is, in fact, common to both simulators.

For FS2002 the same facility also provides full autopilot access and control, and pushback, to adventures. This is

included in FSUIPC from version 2.76.

Here is a complete list of FS98 compatible adventure variables now provided by FSUIPC. For details of the values

they can take, please see the appropriate APL documentation for FS98. Naturally, only the lowest two cloud layers

are accessible (three if the lowest is a Thunderstorm), as are the lowest four temperature layers and lowest four wind

layers. This is because only these numbers of layers were actually available in FS98.

BAROMETRIC_PRESSURE

BAROMETRIC_DRIFT *

CLOUD_THUNDER_ACTIVE

CLOUD_THUNDER_COVERAGE

CLOUD_THUNDER_TYPE

CLOUD_THUNDER_BASE

CLOUD_THUNDER_TOP

CLOUD_THUNDER_ICING

CLOUD_THUNDER_TURB

CLOUD_LOW_ACTIVE

CLOUD_LOW_COVERAGE

CLOUD_LOW_TYPE

CLOUD_LOW_BASE

CLOUD_LOW_TOP

CLOUD_LOW_ICING

CLOUD_LOW_TURB

CLOUD_HIGH_ACTIVE

CLOUD_HIGH_COVERAGE

CLOUD_HIGH_TYPE

CLOUD_HIGH_BASE

CLOUD_HIGH_TOP

CLOUD_HIGH_ICING

CLOUD_HIGH_TURB

TEMPERATURE_SURFACE_TEMP

TEMPERATURE_SURFACE_ALT

**

TEMPERATURE_LOW_TEMP

TEMPERATURE_LOW_ALT

TEMPERATURE_MID_TEMP

TEMPERATURE_MID_ALT

TEMPERATURE_HIGH_TEMP

TEMPERATURE_HIGH_ALT

WIND_SURF_VEL

WIND_SURF_DIR

WIND_SURF_DEPTH

WIND_SURF_TYPE

WIND_SURF_TURB***

WIND_LOW_VEL

WIND_LOW_DIR

WIND_LOW_BASE

WIND_LOW_TOP

WIND_LOW_TYPE

WIND_LOW_TURB

WIND_MID_VEL

WIND_MID_DIR

WIND_MID_BASE

WIND_MID_TOP

WIND_MID_TYPE

WIND_MID_TURB

WIND_UP_VEL

WIND_UP_DIR

WIND_UP_BASE

WIND_UP_TOP

WIND_UP_TYPE

WIND_UP_TURB

* Note that ―BAROMETRIC_DRIFT‖ doesn‘t appear to have been implemented in FS2000/2002, although there is space

for it, or something like it, in the weather structures. The value provided by FSUIPC is, since version 1.962, the

difference between the current aircraft position QNH (which may be in transition), and the METAR reported QNH as

set by the weather control program. Adding the Drift value to the Pressure will give the correct value for ATIS

reports.

** The value placed into ―TEMPERATURE_SURFACE_ALT‖ will either by the value provided for this by the external

weather control program, or a value determined by FSUIPC to be the best for computing Cloud Base altitudes ‗above

ground level‘ (AGL). In the latter case it will be the currently determined ‗Real Weather‘ METAR reporting station‘s

ground elevation when local weather is in force, or the actual ground altitude below the aircraft when global weather

is in force. As noted elsewhere, it is strongly recommended that all weather control programs place the METAR

station‘s altitude into the FS98 equivalent of this variable (at global offset 0xF40) so that ATIS reports from

Adventures can reliably give AGL cloud base information.

*** Since version 1.962 of FSUIPC, the WIND_SURF_TURB value is used to provide wind gust information. If it is zero

there are no gusts. Otherwise it gives the upper gust velocity. This is usually derived from METAR data and set by

the weather control program.

Some additional values are available, specifically for FS2000/2002, but access to these requires a recent version of

Martin Smith‘s APLC32 adventure compiler (version 1.32 or later). Please also check Martin‘s documentation.

FSUIPC_VISIBILITY in statute miles

FSUIPC_DEWPOINT in degrees C (from lowest temperature layer only)

 FSUIPC_PRECIPITATION_TYPE 0=none, 1=rain, 2=snow, from lowest cloud layer

 FSUIPC_PRECIPITATION_RATE 0-5, from lowest cloud layer

FSUIPC_STATUS fixed recognition value, –0.9977, to be checked before using above

Note that accessing any of these variables without 1.56 or later of FSUIPC installed will result in the Adventure

terminating immediately. This apparently occurs because, without FSUIPC filling in the details, these variables are

actually illegal.

Since version 1.80 of FSUIPC, the FSUIPC_PRECIPITATION_TYPE and FSUIPC_PRECIPITATION_RATE variables can also

be written to in an adventure, to control precipitation. The other values are read only. (To write to these two

variables you will need version 1.33 or later of APLC32).

Since version 1.97 of FSUIPC, its own (optional) semi-random rain and snow generation is suspended for 30 seconds

each time the adventure sets either FSUIPC_PRECIPITATION_TYPE or FSUIPC_PRECIPITATION_RATE. This means that any

adventure needing to have assured control over precipitation should refresh or change the variables at less than 30

second intervals, otherwise FSUIPC will assume it has finished and will re-enable its own rain/snow system if it is

selected.

Since version 2.76 of FSUIPC, you can use variable SYSVAR_C4 to read the current FS2002 pushback status, and,

indeed, to control the pushback. The values read/written are:

 3 = off

 0 = pushback straight

 1 = pushback with tail swinging to left (to face aircraft to right)

 2 = pushback with tail swinging to right (to face aircraft to left)

Please note that FS2002 pushes back straight for at least the length of the aircraft before swinging the tail in any case.

Additional Information for Application Programmers

GENERAL NOTE: Before using any of the added controls listed in this section, application programs should check

that FSUIPC has initialised and is ready, otherwise any settings written may be overwritten shortly. This applies

particularly when your applications are run on a Network via WideFS. Whilst WideClient is ‗emulating‘ FS on a

networked PC it will supply zeroes for all reads through the FS6IPC interface. When FS is loaded and FSUIPC is

initialised on the Server PC, the values become valid. Only then make any changes. You can check for FSUIPC

initialisation on FS by reading 0xFFFF at offset 0x4D2 and/or 0x8000 at offset 0x4D4. Also, with effect from version

1.40 you can read 0xFADE as offset 0x4D6.

From version 1.998e of FSUIPC you can read Version information too: please refer to offsets 3304-330B in the

tables.

WEATHER in FS2004 is substantially changed from previous versions. Most if not all of the following notes will

not apply, or at least not precisely as worded here. FSUIPC will offer powerful new features to both read and write

FS2004 weather, both globally and locally (by METAR station ICAO identity). Further details will be published in

due course.

WIND GUST control: Weather control programs designed only for FS98 provided only gust (1) or no gust (0)

information. For these, FSUIPC generates a random gust speed. However, if the program supplies a value greater

than 1, this is treated as a required gust speed in knots. If the value is greater than the base wind speed then it is used

as the upper wind speed, otherwise it is treated as the required difference.

CLOUD type control: The cloud type is copied by FSUIPC if this is provided as a value from 1 to 10 by the weather

control program. The automatic setting of cloud types by FSUIPC applies if the type provided is out of this range.

The cloud types used in FS98 still apply to FS2000/2002, although they all seem to be mapped by FS to one of Cirrus

(1), Stratus (8), Cumulus (9), or Thunderstorm (10). I also think that the Cumulus setting gives an appearance that is

far short of the requested coverage. (For automatic type setting, FSUIPC only chooses Cumulus for sparser cloud

covers, or occasionally boosts the coverage from that requested).

RAIN and SNOW control: Your application can be made to control the rain and snow as follows:

Set 16-bit word at global offset 0x4D2 as follows:

Low byte = precipitation rate: 0–5 (0 none, 5 most)

 High byte = precipitation type: 0–2 (0 none, 1 rain, 2 snow)

This will only have any effect if there are any clouds specified. If this facility is used, FSUIPC‘s own random

rain/snow generation is turned off. To re-enable this action (if it isn‘t disabled by user option), your application

should restore the value at 0x4D2 to 0xFFFF before terminating.

Do not read this offset for precipitation details. FSUIPC will initialise it to FFFF, and if it is left at that will, by

default, perform its own random rain/snow. To stop that you must write to it: 0x0000 for no precipitation, and so on.

DEW POINT control: As another interim measure, your application can be made to control the surface temperature

layer's dew point, as follows:

 Set 16-bit word at global offset 0x4D4 to the dew point temperature in Degrees Centigrade x 256

To re-enable the automatic setting of dew point by FSUIPC, your application should restore the value at 0x4D4 to

0x8000 before terminating. Do not read this offset for dew point details. FSUIPC will initialise it to 0x8000, and if it

is left at that it will, by default, perform its own random dew point calculations.

Upper temperature layer dew points are calculated by FSUIPC on the basis that the air becomes drier with altitude.

This isn‘t always true—obviously the cloud layers have saturated air. However, it seems that FS2000 doesn‘t actually

do anything with the dew point at present: it should affect things like icing, but this is apparently not so.

ADVANCED WEATHER Interface (AWI): A special interface is provided by FSUIPC that provides full writing

and reading of all FS2000 and FS2002 global weather data. This involves the use of otherwise illegal global offset

values, so to prevent applications crashing FS they should check whether the advanced interface is provided. FSUIPC

indicates this support by providing the value 0xFADE in the 16-bit word at offset 0x4D6. If this special recognition

pattern is not read at this address then the Advanced Weather facilities should not be used. [Programmers needing

more information on this interface are referred to the files enclosed in UIPCAWI.ZIP, included with this release].

For FS2004, although the AWI can be used for Global weather, a New Weather Interface (NWI) is provided. This

deals with all aspects of FS2004 weather and allows both global and local (weather station) weather to be set and

read. This is important in FS2004 because so-called ―global‖ weather does not stay global for long. The atmosphere

is ‗alive‘ and constant changes are occurring, including the localisation of weather. The NWI is described separately

in the SDK, look for the file ―New Weather Interface for FS2004.zip‖.

ADDITIONAL Weather information: When FSUIPC‘s weather processing for FS2000/2002 is in operation, some

extra weather data is available through the following (read-only) offsets:

 0x4C8 16-bit word Dew point at the lowest temperature layer, in degrees C x 256.

 0x4CA 8-bit byte Flag: 0 = no weather accessible

 1 = global weather

 2 = local or downloaded weather in operation, but not accessible

 3 = local or downloaded weather

 0x4CB 8-bit byte Precipitation Rate (0-5), in lowest cloud layer only

 0x4CC 8-bit byte Precipitation Type (0=none, 1=rain, 2=snow), in lowest cloud layer only

 0x4CD 8-bit byte Thunderstorm cloud layer cover, 0-8 octas

 0x4CE 8-bit byte Lowest (non-storm) cloud layer cover, 0-8 octas

 0x4CF 8-bit byte Next highest cloud layer cover, 0-8 octas

SURFACE wind information: Normally the information on the surface wind and the first three upper wind layers is

accessible from the same ―current weather‖ offsets as in FS98. However, when FSUIPC‘s ―Wind Transition‖ facility

is enabled, this won‘t be so. There will only be one very thick surface wind layer, which FSUIPC manipulates to

provide the correct wind values at the correct time.

Full layer information (not limited to FS98‘s four layers) is available through FSUIPC‘s Advanced Weather interface

for FS2000/2002. Otherwise, programs needing details of the surface wind speed and direction can read them at

offsets 0x4D8 (speed in knots) and 0x4DA (Magnetic direction in the usual FS98 units, i.e. 65536 == 360 degrees).

CLOUD BASES and GROUND ALTITUDE: There‘s a small problem with cloud bases. Within both FS98 and

FS2000/2002 this altitude information is received and stored in metres above sea level (AMSL). But in METARs and

ATIS reports, clouds are reported at levels above the reporting station. External weather control programs need to

add the station‘s ground elevation to the METAR-extracted cloud bases before supplying them to FS. That is easy

enough. But then Adventure and other programs need to recalculate the original AGL values for ATIS reports.

Traditionally this has been done by subtracting the GROUND ALTITUDE, but this can go pretty badly wrong, for

this is the elevation of the ground below the aircraft at the time. If an ATIS report is provided to an aircraft flying into

Denver over the Rockies, with a cloud base over Denver well below the mountains, the result will not only be wrong

but will be negative!

To get around this problem I am suggesting that all external weather control programs supply the reporting station‘s

ground elevation as the surface temperature altitude—i.e. the value, in metres, which is placed into global offset

0xF40. This makes sense in any case, as both FS98 and FS2000/2002 take this, the lowest temperature layer, to be

the surface temperature, and by definition the METAR is reporting the temperatures pretty close to the surface at the

reporting station. Note that the surface temperature altitude specified via the Advanced Weather Interface will NOT

be provided to adventures. For this special ground level operation the program must set 0x0F40.

Since version 1.60, FSUIPC has also been setting the surface temperature altitude to the ground altitude (unless over-

ridden by the external weather program), so Adventures using this won‘t be any worse off than before. In fact, if local

‗real‘ weather is in force, FSUIPC will derive the METAR station‘s ground elevation and supply that instead, in the

same position.

So, all that is needed then is for Adventure writers to calculate AGL values using the surface temperature altitude

instead of the ground altitude, and things will be better. <G>

WEATHER INDICATOR for FS2000 and FS2002 (not FS2004): FS has two weather modes, which I will call

―Local‖ and ―Global‖. Local weather is set when you use FS‘s ―real weather‖ downloading facility to set your

weather. In this mode weather control is left to FS. Note that Local Weather mode is also set by FS when a Flight is

loaded which was saved with ‗real weather‘ operating.

Using the ―Clear All Weather‖ button in FS‘s weather dialogue reverts the simulator to ―Global Weather‖ mode. In

this mode external weather programs can always have an effect. Global Weather mode may also be re-enabled by

loading a Flight which was saved in this mode.

If external inputs are received by FSUIPC when Local Weather is in force, then the result depends on the setting of

the ―AutoClearWeather‖ option. If it is disabled then external weather inputs are recognised and stored, but cannot be

seen to operate until the user presses the ―Clear All Weather‖ button, at which time all the received weather is

enacted. If this option is enabled then FSUIPC will automatically clear the local weather upon any external weather

input, and activate it within a few seconds (allowing time for the graphics to catch up). This is the default action.

FSUIPC provides an indicator of the current weather mode, as follows:

Byte at offset 0x4DD:

2
7
 = 1 indicates ―Local Weather‖ is in operation

 2
7
 = 0 indicates ―Global Weather‖ is in operation

 2
6
 = 1 indicates FS2000 weather can be read (whether Local or Global)

 2
6
 = 0 indicates that the weather cannot be read (or this is not FS2000!)

The WeatherSet.exe application provided with FSUIPC uses these bits to display the current mode in its title bar.

OPTION control: There are now two different methods for external programs to change FSUIPC weather filtering

options. The older method, now discouraged, is as follows:

 Byte at 0x4DE = Mask: set bits here of each option to change

Byte at 0x4DF = Value: the related bits set or clear, as needed.

The 8 bits are allocated as follows (the ‗0‘ settings are the defaults):

 0 1 GenerateRain 0=Yes 1=No

 1 2 GenerateCirrus 0=Yes 1=No

 2 4 GraduatedVisibility 0=Yes 1=No

 3 8 WindTransitions 0=No 1=Yes

 4 16 surface winds TRUE* 0=No 1=Yes

 5 32 UpperWindGusts 0=No 1=Yes

 6 64 StormsAutomatic 0=No 1=Yes

 7 128 ExtendMetarMaxVis 0=Yes 1=No

* Surface wind directions input to FSUIPC via the old FS98 locations are treated as being Magnetic, for compatibility

with FS98. If you know you are actually sending True directions (as given in METARs), then you can change this

here. (Note: this used to be an INI file option, now removed to prevent user confusions!).

Your application should restore both bytes to zero before terminating, so that the user‘s settings again prevail.

The newer and more thorough method uses a new set of offsets and is safer. It has a built in safeguard against the

program terminating untidily—something easily done if it is used under WideFS and the WideClient.exe is closed

before the application!

This uses 9 bytes in the FSUIPC interface, as follows:

3127 1 byte timer. Nothing happens until you write to this byte. If you write zero here, FSUIPC reverts to

the user-selected options. When you write a non-zero value, the options selected in the next 8 bytes

(mask in DWORD at 3128, settings at 312C) are applied.

FSUIPC counts the value here down by 1 every ―tick‖ (55mSecs). When it reaches zero, the user

options are restored. This is a safeguard against your program hanging, crashing or terminating

untidily. To retain the option selections you wish you must write a non-zero value here regularly.

Each time you do so the values in 3128 and 312C are re-applied.

Obviously the maximum time between these updates is 255 x 55 mSecs = 14 seconds, but to be safe

write every 5 or so seconds.

3128 32 bit Mask, defining the options you want to control (see list below)

312C 32 bit Settings, defining the state you want for each of the options selected by the mask. Note that

the user can still opt to prevent you changing his options. That's an option you cannot change.

These are the bit assignments:

2^0 0x00000001 Clouds: do NOT generate rain/snow

2^1 0x00000002 Clouds: do NOT add a light cirrus layer

2^2 0x00000004 Visibility: DISABLE graduated visibility

2^3 0x00000008 Winds: transitioning option

2^4 0x00000010 (reserved, not changeable)

2^5 0x00000020 Winds: allow upper gusts

2^6 0x00000040 INI file only, StormsAutomatic

2^7 0x00000080 Visibility: do NOT random extend METAR max

2^8 0x00000100 Visibility: enable smoothing

2^9 0x00000200 Winds: do NOT set shear sharp

2^10 0x00000400 (reserved, not changeable)

2^11 0x00000800 (reserved, not changeable)

2^12 0x00001000 Technical: do NOT attempt to stop white-outs

2^13 0x00002000 (reserved, not changeable)

2^14 0x00004000 (reserved, not changeable)

2^15 0x00008000 Winds: do NOT extend top wind upwards

2^16 0x00010000 Clouds: set only one cloud layer

2^17 0x00020000 Clouds: set only thin cloud layers

2^18 0x00040000 Clouds: add random turbulence

2^19 0x00080000 Clouds: add random icing

2^20 0x00100000 Winds: add random turbulence

2^21 0x00200000 Winds: allow gusts in upper winds

2^22 0x00400000 (reserved, not changeable)

2^23 0x00800000 Clouds: set thunder cloud thickness

2^24 0x01000000 Clouds: add jet trails (FS2000) or V-sky layer (FS2002)

2^25 0x02000000 Winds: add value to wind layer altitudes

2^26 0x04000000 (reserved, not changeable)

2^27 0x08000000 (reserved, not changeable)

2^28 0x10000000 Winds: set turbulence as variability

2^29 0x20000000 Technical: smooth pressure changes

2^30 0x40000000 (reserved, not changeable)

2^31 0x80000000 Winds: do NOT raise subterranean winds

HOT KEYs for Applications: Facilities are provided to allow programs to detect selected key presses made when

FS has the focus. Up to 56 such hot keys can be specified, but this number is shared by all running applications.

Additionally an extra key pressed before the main hotkey is released can be requested and supplied, multiplying the

number of possibilities immensely without needing many slots.

The facility operates using some of the extended IPC offsets, thus:

DWORD at offset 0x320C = size of Hot Key table (read only). Currently = 56.

Read this first to see how many entries there are altogether. If it reads Zero you have the wrong version of FSUIPC!

Say this contains 'n', then n DWORDs from 0ffset 0x3210 onwards (i.e. 0x3210, 0x3214 ...) are ‗slots‘ for

Applications to specify Hot Keys. These will be zero initially, and zero if free. The application must search through

to find an empty slot, then set this into it:

Byte 0 (bits 0-7): Virtual Keycode (see the list in my FS Controls documents or the FSUIPC Advanced

Users Guide).

Byte 1 (bits 8-15): Shift state indicator

Bit 0, the least significant, = shift

Bit 1= ctrl

Bit 2= alt (but use of alt strongly discouraged, see Note 1)

Bit 3= ―expect another keypress‖. If this bit is set then when the Hot Key is detected FSUIPC waits

for the KEYUP or another key press first. The virtual keycode for that keypress is then

returned in Byte 3, below.

Bit 4= tab (provided as an extra ―shift‖, for more key press flexibility)

Byte 2 (bits 16-23): Flags from application.

Bit 0 (1)=reserved. This was originally used to control the next option, but it was implemented

incorrectly in FSUIPC, so now, to avoid problems, the bit is deliberately ignored.

Bit 1 (2)= set if Hot Key should be passed through to FS, else it will be trapped.

 See Notes 1 & 2.

Byte 3 (bits 24-31): Flags or results from FSUIPC.

This byte needs to be cleared by the application so that it can detect when the Hot Key occurs.

There is no queuing. If the Hot Key alone is seen, this byte is set to 1. If bit 3 was set in Byte 1

above and another key was pressed before the hotkey was released, then the virtual keycode for the

extra key (2–255) is provided here.

Note 1: ALT key combinations are not a good idea, and cannot be stopped from passing to FS. You can get them, but

FS will open the menu in any case.

Note 2: If the same Hot key is listed more than once (for instance by several applications), every copy for the same

Hot Key will get the flag set, irrespective of the pass-through option. The option only applies to finally passing it to

FS. If any one Hot Key user says that the key is not to be passed to FS (i.e. by leaving Flag Bit 1 unset), then it isn‘t

passed through.

Note 3: FSUIPC hotkeys, allocated in its ―Technical‖ page, take precedence and are not passed through to

applications or FS.

Use: Having found an empty slot, write the above value into it, then monitor the highest byte of that same slot for

Non-Zero. That's the keystroke. Clear that byte to detect it again. If you register several Hot Keys it will be more

efficient to only scan the slots themselves when a hot key actually occurs. To detect this, simply monitor the one byte

at offset 32FE (this can be paired with 32FF to scan for keys and buttons together). When it changes, read and check

the flags in your slots. (The count at 32FE may change without any of your keys occurring, of course, if other

applications are trapping other hot keys).

When finished, and certainly before exit, be sure to clear the whole DWORD to zero so other applications can use it.

If you only want to use keystrokes for a certain part of the operation of your program, only set the entries there and

clear them when done.

Note that if several applications want the same keystroke, they will all get it. Of course, your application can check

through the whole list to make sure there are no clashes/duplicates and warn the user if so. You might have to do that

at intervals in case a clashing application is loaded after yours.

This system will work through WideFS with no problems too. You should be using WideFS 4.61 or later with this

version of FSUIPC.

MODULES MENU access for Applications: From version 2.89 of FSUIPC, the Hot Key facilities are extended to

allow an application to add an entry to the Modules menu. The Application finds a free Hot Key slot, then sets it up

to receive notification on menu access, and writes the text needed for the menu item to another location. When the

menu item is selected, the flag in the hot key slot is set just as when a hot key is used.

This way of accessing the menu has the advantage that it will also work when the application is running on another

PC, via WideFS. Of course, any response to that menu selection will occur on whichever PC the application is

running.

To avoid having menu items relating to applications that have crashed or terminated without tidying up correctly,

each menu item added is subjected to a time-out. Applications have to refresh a count in the Hot Key slot at regular

intervals (10 seconds or less) otherwise the menu item is deleted and the Hot Key slot freed. The time-out is

suspended when FS is paused, and there is an option to have FS pause automatically when the menu entry is selected.

This is the way this facility is used:

1. Find a free Hot Key slot (i.e. search the 56 DWORDs at offset 0x3210 for a zero value). Say slot I is the one

found.

2. Write 0x0000FFFF to the slot (i.e to the DWORD at offset 0x3210 + 4*I). If you want FS to pause when the

menu item is selected, write 0x0002FFFF instead. The 02 part is the flag indicating that a pause is required.

3. Write the text for the menu entry required to offset 0x2FE0, with the first byte set to the slot number (I). For

example, for an entry ―UIPC Hello‖ (H being the shortcut) you would set the string to be written to 0x2FE0 as

follows:

static chMenuEntry[] = ―?UIPC &Hello‖;

chMenuEntry[0] = I;

4. The ‗&‘ in the string tells Windows which character to underscore, and this denotes the shortcut key, but this is

optional.

5. The string is limited to 31 characters, including the slot number at the beginning, plus a zero terminator. In other

words the offset range is 0x2FE0–0x2FFF inclusive. This area is ―write only‖. Don‘t expect to be able to read

back what you write here.

6. The write to 0x2FE0 triggers FSUIPC into adding the menu entry to the Modules main menu item, but this is

dependent upon the slot it references being set with 0xFF in its first (least significant) byte. From the moment the

slot is set with 0xFF there it is changed every 55 mSecs or so, unless FS is paused or in a dialogue. The change is

a decrement of the next byte in the slot—the other one you also set to 0xFF. When this reaches zero, the menu

entry is removed and the slot is cleared. This gives a maximum timeout of 255 x 55mSecs, or about 14 seconds.

You can make it less, of course, by initialising that byte to a lower value than 0xFF (255), but I‘d recommend

sticking to the maximum.

7. This means that if you want the menu entry to stay available you must write 0xFF (or whatever) to that byte (i.e.

the slot offset + 1) at regular intervals, say every 10 seconds. The 4 second leeway allows some safety, but you

may want more—very little FS overhead is caused by writing that one byte every 1 second if you need to, but

this is really over the top. More overhead is caused by writes when running on another PC using WideFS, so I

would suggest 5 seconds as a minimum.

8. When the user selects your menu entry, FSUIPC will set the 2^0 (0x01) bit in the top byte (offset+3) in your slot.

Just as with Hot Keys, you need to be looking for this at regular intervals, perhaps every 200 milliseconds or so.

Frequent reads pose little overhead for WideFS use, but very frequent ones should really be avoided when you

are running on the FS PC.

9. After processing the user request, whatever it is, don‘t forget to clear the indicator so you can detect the next

one—writing zero to the byte at the offset+3 is all that is needed.

10. Finally, if you opted for FS to pause when the menu item is selected you need to unpause FS so that it can

continue. Write zero to the 16-bit value at offset 0x262.

When you no longer need the menu entry, or just before terminating your program, you should write zero to the

DWORD Hot Key slot. This will make FSUIPC remove the menu entry immediately. If your program does not tidy

up the entry will be removed on the timeout.

HOT BUTTONs for Applications: Facilities are provided to allow programs to detect selected joystick button

presses. This facility is very similar to the Hot Key system described above. Up to 56 such hot buttons can be

specified, but this number is shared by all running applications. The facility operates using some of the extended IPC

offsets, thus:

DWORD at offset 0x290C = size of Hot Key table (read only). Currently = 56.

Read this first to see how many entries there are altogether. If it reads Zero or some very large number, then you have

the wrong version of FSUIPC!

Say this contains 'n', then n DWORDs from 0ffset 0x2910 onwards (i.e. 0x2910, 0x2914 ...) are ‗slots‘ for

Applications to specify Hot Keys. These will be zero initially, and zero if free. The application must search through

to find an empty slot, then set this into it:

Byte 0 (bits 0-7): Joystick number (0-15) + 128. In other words 128 for Joystick 0, 129 for joystick 1, etc.

 Joysticks are numbered as in FS2000.CFG, from 0. Game Controllers numbers from 1.

Byte 1 (bits 8-15): Button number (0-39)

Again buttons are numbered here as in FS2000.CFG, from 0. Game Controllers numbers from 1.

Buttons 0–31 are the normal buttons, numbers 32–39 are the FS representation of the 8 ―Points of

View‖ at 45 degree angles supported by some joystick drivers for the POV Hats.

Byte 2 (bits 16-23): Flags from application.

 This byte indicates which change is to be notified:

 = 0 for Off to On

 = 1 for On to Off

 = 2 for both Off to On and On to Off

 = 3 for Off to On but repeating about 6 times per second whilst it is on.

Byte 3 (bits 24-31): Flags from FSUIPC.

Bit 0 (value 1) is set when the specified Hot Button change occurs. Needs to be cleared by

Application when seen so it can detect another. (No queuing).

Bit 1 (value 2) is set when bit 0 is set only if the button is still pressed. This can be used to

differentiate the two events when Byte 2 is given as ―2‖ for both off–on and on–off events.

Note: If the same Hot button is listed more than once (for instance by several applications), every copy for the same

Hot button will get the flag set.

Use: Having found an empty slot, write the above value into it, then monitor the highest byte of that same slot for

Non-Zero. That's the button event. Clear that byte to detect it again. If you register several HotKey Buttons it will be

more efficient to only scan the slots themselves when a hot button actually occurs. To detect this simply monitor the

one byte at offset 32FF. (This can be paired with 32FE to scan for buttons and keys). When it changes, read and

check the flags in your slots. (The count at 32FF may change without any of your buttons occurring, of course, if

other applications are trapping other hot buttons).

When finished, and certainly before exit, be sure to clear the whole DWORD to zero so other applications can use it.

If you only want to use joystick buttons for a certain part of the operation of your program, only set the entries there

and clear them when done.

Note that if several applications want the same button, they will all get it. Of course, your application can check

through the whole list to make sure there are no clashes/duplicates and warn the user if so. You might have to do that

at intervals in case a clashing application is loaded after yours.

This system will work through WideFS with no problems too. You should be using WideFS 4.61 or later with this

version of FSUIPC.

FSUIPC SOUND INTERFACE

 [Applicable to FSUIPC versions 3.987 and 4.609 or later.]

These facilities are based on those originally released in the module called "ESOUND" many years ago. They uses

FSUIPC offsets in the region 0x4200-0x42FF, as follows:

4200 BYTE Command/Engaged Marker

 0 = FREE: FSUIPC is ready for a sound command (written by FSUIPC)

 1 = PLAY once command (written by application)

 2 = PLAY looped command (written by application)

 3 = STOP playing command (written by application)

 4 = QUERY sound status (written by application)

4201 BYTE Option -- device and position selection

 Bits 0-3 = sound device number (0-15). 0 is the default device.

 FSUIPC lists the devices in the [Sounds] section of its INI file.

 Bits 4-6 = position, 0-7, 0 = fwd centre, 1 = fwd right, 2 = centre right, 3 = rear right,

 4 = rear centre, 5 = rear left, 6 = centre left, 7 = fwd left

 These are collapsed to left-centre-right with a stereo setup.

4202 WORD Sound STATUS as a 16-bit word. Related to the REFERENCE (below)

 0 = Status not set

 1 = Playing sound once

 2 = Playing sound in loop

 3 = sound has ended, or reference not listed

4204 DWORD REFERENCE as 32-bit non-zero integer.

 The application can use this how it likes, but it should be unique,

 otherwise the same sound is referenced.

4208 Char string Up to 247 characters plus a zero terminator, identifying the Wave

 file to be played when a PLAY or PLAY LOOP command is given. The

 ".wav" suffix is not needed, but can be given.

 The default sound path is the <FS>\Sound folder, unless changed in

 the [Sounds] section of the FSUIPC INI file. You can use subfolders

 within this. Include <drive>: details for a complete or separate path.

PROTOCOL

General:

1. Wait for COMMAND (Byte at 4200) = 0 (don't forget to Sleep a little).

2. Then write data to 4204 (DWORD) and, for a new sound to play, the file or pathname to 4208 (zero-terminated

character string). For options write to 4201 (though this is best done by writing a WORD command to 4200

with the options in the high byte).

3. Finally write the Command to 4200 possibly as a WORD with the 4201 options in the high byte.

Note that the latter two parts, writing to 4204- and to 4200 can be done in the same "FSUIPC_Process" call, provided

the FS6IPC structure to write the data to 4204 onwards is listed before that setting the command to 4200. Otherwise

the command may be obeyed with wrong data!

Status:

For a new sound the "reference" DWORD should be unique. if your program is the only one using FSUIPC sound,

and you are sure of this, then this is easy. You can use addresses of wave filename strings, or sequence numbers,

whatever. But if you may be sharing the resource via IPC this may not be good enough. maybe the user even runs

TWO or more copies of your program?

To get a unique reference there are two simple methods:

a) Use the current time or "tick count" as the reference (e.g. the result of the windows API call "GetTickCount()").

This isn't guaranteed to be unique, but it's a good start. for several close or simultaneous sounds, get one tick

count and add 1 for each successive sound.

b) Ask FSUIPC for the status of the sound with a given reference. if it says the sound doesn't exist or has ended,

then just use the same reference again.

Note that if you use the same reference as a playing sound to play a new sound, then the earlier one will stop and the

new one will start. For a program with sequential sounds this is fine. You only need different references when you

want overlapping or simultaneous sounds.

Okay. Here's how to get the Status:

1. Wait for COMMAND byte at 4200 = 0 (don't forget to Sleep a little)

2. Write your reference to the DWORD at 4204

3. Write 4 (QUERY STATUS command) to 4200

4. Wait for COMMAND byte at 4200 = 0 (best to sleep for 100mSecs or so before this)

5. Read STATUS in WORD at 4202.

If the STATUS value is 3 then the reference is unused or the referenced sound has Ended.

Play/Loop sound:

Having determined a reference to use in any way you like, as described above,

1. Wait for COMMAND byte at 4200 = 0 (don't forget to Sleep a little)

2. Write Reference to DWORD at 4204 and Wave filename or pathname to 4208 onwards.

3. Write PLAY (1) or PLAY LOOP (2) command to 4200, along with the Options in the high byte.

Stop sound:

1. Wait for COMMAND byte at 4200 = 0 (don't forget to Sleep a little)

2. Write Reference for sound to be stopped to DWORD at 4204.

3. Write STOP (3) command to 4200

Table of offsets for FS98 (and applicable to FS2000, FS2002 and FS2004 via FSUIPC)

(The applicability to FS2002 and FS2004 is still currently not 100% Please refer to the additional column in the

tables. Where it is empty this indicates that it‟s status in that version has not yet been determined. Note that many

offsets will also be applicable to CFS2 and some also perhaps to CFS1 but I‟m afraid you‟ll have to decide which

for yourself)

This table is derived from much foraging of my own, but certainly not without a great deal of initial assistance from

the many existing lists of FS98 offsets available due to the hard work of others before me. I must therefore

acknowledge those I know of:

Thanks to: Adam Szofran, Ted Wright, Richard Lovett, David Drouin, Joaquin Manuel, JF Vole, Jason Grooms,

Alessandro Antonini, Luciano Napolitano, Hao Chen, Pelle Liljendal, Arno Gerretsen, Wim Van Ertvelde, Hervé

Sors, Ian Donohoe and Matthias Neusinger. Apologies to anyone I‘ve omitted. Many of the lists circulating appear to

be anonymous, so thanks to him/them too! <G>

Note that the values listed here have mostly been verified and mapped correctly by FSUIPC (version 2.96 or later) for

use in FS2000 (fully patched with Microsoft updates) and possibly CFS2, but there is no guarantee that any particular

value is supported. Those marked as okay with FS2002 are assuming an official Released version of FS2002 (build

10919.01) with no patches, working with FSUIPC 2.97 or later (3.80 for some locations). The mappings confirmed in

FS2004 need the official release (build 30612.02) or later, and FSUIPC version 3.98 at least.

In this table Offsets are always in hexadecimal. For everything else numbers are decimal unless indicated in the C-

style (i.e. 0xFFFF is hexadecimal for 65535, or –1 in a 16-bit signed word). The size column is in bytes throughout.

Offset Size Use FS2002 FS2004*

0020 4 Ground altitude in Metres x 256. (see also offset 0B4C) Ok Ok

0024 Varies Zero terminated string giving the Start-Up situation or flight

name, including the path from the FS folder (usually PILOTS\

…)

Ok Ok

012C Varies Zero terminated string giving the name of the current Log book,

with the default being called just ‗logbook‘ instead of the true

filename. [This applies to FS2002, but hasn‟t been verified on

the others]

Ok Ok

0238 1 Hour of local time in FS (0–23) Ok Ok

0239 1 Minute of local time in FS (0–59) Ok Ok

023A 1 Second of time in FS (0–59) Ok Ok

023B 1 Hour of Zulu time in FS (also known at UTC or GMT) Ok Ok

023C 1 Minute of Zulu time in FS2 Ok Ok

023E 2 Day number in Year in FS (counting from 1) Ok Ok

0240 2 Year in FS Ok Ok

0246 2 Local time offset from Zulu (minutes). +ve = behind Zulu, –ve =

ahead

Ok Ok

0248 2 Season: 0=Winter, 1=Spring, 2=Summer, 3=Fall Ok Ok

0262 2 Pause control (write 1 to pause, 0 to un-pause). Ok Ok

0264 2 Pause indicator (0=Not paused, 1=Paused) Ok Ok

0274 2 Frame rate is given by 32768/this value Ok Ok

0278 2 Auto-co-ordination (―auto-rudder‖), 1=on, 0=off Ok, but

doesn’t

change

Menu

setting

Ok, as

FS2002

0280 1 Lights: this operates the NAV lights, plus, on FS2000, the TAXI,

PANEL and WING lights. For separate switches on FS2000 (and

CFS2?) see offset 0D0C

Ok Ok

0281 1 Beacon and Strobe lights. For separate switches on FS2000 (and

CFS2?(see offset 0D0C

Ok Ok

028C 1 Landing lights. (See also offset 0D0C on FS2000, and maybe

CFS2).

Ok Ok

029C 1 Pitot Heat switch (0=off, 1=on) Ok Ok

02A0 2 Magnetic variation (signed, –ve = West). For degrees

*360/65536. Convert True headings to Magnetic by subtracting

this value, Magnetic headings to True by adding this value.

Ok Ok

02B2 2 Zoom factor: FS2002 only, and read-only. 64=x1, 128=x2 et

cetera

Ok Ok

02B4 4 GS: Ground Speed, as 65536*metres/sec. Not updated in Slew

mode!

Ok Ok

02B8 4 TAS: True Air Speed, as knots * 128 Ok Ok

02BC 4 IAS: Indicated Air Speed, as knots * 128 Ok Ok

02C4 4 Barber pole airspeed, as knots * 128 Ok Ok

02C8 4 Vertical speed, signed, as 256 * metres/sec. For the more usual

ft/min you need to apply the conversion *60*3.28084/256

Ok Ok

02CC 8 Whiskey Compass, degrees in ‗double‘ floating point format

(FLOAT64)

Ok Ok

02D4 2 [FS2004 only] ADF2 Frequency: main 3 digits, in Binary Coded

Decimal. See also offset 02D6. A frequency of 1234.5 will have

0x0234 here and 0x0105 in offset 02D6.

No Ok

02D6 2 [FS2004 only] Extended ADF2 frequency. The high byte

contains the 1000‘s digit and the low byte the fraction, so, for a

frequency of 1234.5 this offset will contain 0x0105.

No Ok

02D8 2 [FS2004 only] ADF2: relative bearing to NDB (*360/65536 for

degrees, –ve left, +ve right)

No Ok

02DC 6 [FS2004 only] ADF2 IDENTITY (string supplied: 6 bytes including

zero terminator)

No Ok

02E2 25 [FS2004 only] ADF2 name (string supplied: 25 bytes including zero

terminator)

No Ok

02FB 1 [FS2004 only] ADF2 morse ID sound (1 = on, 0 = off), read for

state, write to control

No Ok

0300 2 VOR1 DME distance, 16-bit integer, nm * 10 [FS2002+] Ok Ok

0302 2 VOR1 DME speed, 16-bit integer, kts * 10 [FS2002+] Ok Ok

0304 2 VOR1 DME time to station, 16-bit integer, secs * 10 [FS2002+] Ok Ok

0306 2 VOR2 DME distance, 16-bit integer, nm * 10 [FS2002+] Ok Ok

0308 2 VOR2 DME speed, 16-bit integer, kts * 10 [FS2002+] Ok Ok

030A 2 VOR2 DME time to station, 16-bit integer, secs * 10 [FS2002+] Ok Ok

030C 4 Vertical speed, copy of offset 02C8 whilst airborne, not updated

whilst the ―on ground‖ flag (0366) is set. Can be used to check

hardness of touchdown (but watch out for bounces which may

change this). [FS2002+]

Ok Ok

0310 8 FS2002 timer (double float, elapsed seconds including fractions,

incremented each ‗tick‘ – i.e. 1/18
th

 sec). This runs all the time. It

is used for all sorts of things, including the elapsed time between

key/mouse-originated controls, to determine whether to

accelerate inc/dec types. See also 0368,

Only

FS2002/4

Ok

032C 2 ―Plane is in fuel box‖ flag (same as Scenery BGL variable 0288) Ok Ok

0330 2 Altimeter pressure setting (―Kollsman‖ window). As millibars

(hectoPascals) * 16

Ok Ok

0338 2 Airframe can suffer damage if stressed (0=no, 1=yes) NO NO

033A 2 Manual fuel tank selection if set (appears to be standard anyway

in FS2000)

NO NO

033C 2 Engine stops when out of fuel if set NO NO

033E 2 Jet engine can flameout if set (appears not an option in FS2000?) NO NO

0340 2 Manual magneto controls if set (appears to be standard anyway

in FS2000)

NO NO

0342 2 Manual mixture control if set No No

034C 2 ADF1 Frequency: main 3 digits, in Binary Coded Decimal. See

also offset 0356. A frequency of 1234.5 will have 0x0234 here

and 0x0105 in offset 0356.

(See also offset 0389)

Ok Ok

034E 2 COM1 frequency, 4 digits in BCD format. A frequency of

123.45 is represented by 0x2345. The leading 1 is assumed.

Ok Ok

0350 2 NAV1 frequency, 4 digits in BCD format. A frequency of 113.45

is represented by 0x1345. The leading 1 is assumed. (See also

offset 0388)

Ok Ok

0352 2 NAV2 frequency, 4 digits in BCD format. A frequency of 113.45

is represented by 0x1345. The leading 1 is assumed. (See also

offset 0388)

Ok Ok

0354 2 Transponder setting, 4 digits in BCD format: 0x1200 means

1200 on the dials.

Ok Ok

0356 2 Extended ADF1 frequency. The high byte contains the 1000‘s

digit and the low byte the fraction, so, for a frequency of 1234.5

this offset will contain 0x0105.

Ok Ok

0358 2 COM frequency settable in 25KHz increments if true (else

50KHz)

?

035C 2 ADF frequency settable in 100Hz increments if true (else 1KHz) ?

0366 2 Aircraft on ground flag (0=airborne, 1=on ground). Not updated

in Slew mode.

Ok Ok

0368 4 Control timer 2 (see also 0310), a 32-bit ‗float‘. ?

036C 1 Stall warning (0=no, 1=stall) Ok Ok

036D 1 Overspeed warning (0=no, 1=overspeed) Ok Ok

036E 1 Turn co-ordinator ball position (slip and skid). –128 is extreme

left, +127 is extreme right, 0 is balanced.

Ok Ok

0371 1 Reserved (used in FSUIPC4)

0372 2 Reliability % (0–100). (Not sure if this is effective in FS2000) Ok No

0374 2 NAV1 or NAV2 select (256=NAV1, 512=NAV2) ?

0378 2 DME1 or DME2 select (1=DME1, 2=DME2) ?

037C 2 Turn Rate (for turn coordinator). 0=level, –512=2min Left,

+512=2min Right

Ok Ok

0388 1 NAV radio activation. If you change the NAV1 or NAV2

frequencies, writing 2 here makes FS re-scan for VORs to

receive on those frequencies.

?

0389 1 ADF radio activation. If you change the ADF frequency, writing

2 here makes FS re-scan for an NDB to receive on that

frequency. (Although FS2000 seems to do this quite soon in any

case)

?

038A 1 COM radio activation. If you change the COM radio, writing a 1

here makes FS scan for ATIS broadcasts to receive on that

frequency.

?

03B0 8 Left aileron deflection, in radians, as a double floating point

value

?

03B8 8 Right aileron deflection, in radians, as a double floating point

value

?

03C0 64 The current state of the buttons on actively scanned joysticks

(local ones, 0 to 15). Each of the 16 DWORDS contain the 32-

bit state of the joystick 0-15, in order. Button 0 is the least

significant bit (bit 0) in each DWORD.

Ok Ok

0400 128 The filename of the last flight (or situation) saved, as an ASCII

string with a zero terminator. The filetype (.flt or .stn) is not

included. Use the counter at 3BD2 to determine when this has

changed.

Ok Ok

0480 8 Aileron trim axis input, 64-bit floating point (double), read-only Ok Ok

0488 8 Rudder trim axis input, 64-bit floating point (double), read-only Ok Ok

0490 8 Aileron trim axis required value, 64-bit floating point (double).

If 2^0 is set in the byte at 04A0, then, when written, this value is

copied to the FS trim (2EB0) instead of the value in 0480

Ok Ok

0498 8 Rudder trim axis required value, 64-bit floating point (double).

If 2^1 is set in the byte at 04A0, then, when written, this value is

Ok Ok

copied to the FS trim (2EC0) instead of the value in 0488

04A0 1 Aileron and rudder trim connection control. See offsets 480–

0498 above.

 2^0 = 1 to disconnect aileron trim (2EB0) from FS

 2^1 = 1 to disconnect rudder trim (2EC0) from FS

This byte will be cleared and the connection restored (together

with the most recent axis values) within about 10 seconds of it

being written non-zero, so you need to write this every few

seconds.

Ok Ok

04A8 8 Elapsed seconds value, as a double. Accurate to fractions of a

second but only updated frame by frame. This value counts

simulated time, stopping in paused and menu modes, speeding up

and slowing down according to the actual sim rate.

Ok Ok

04B0 48 Area reserved by FSUIPC. (See details for user accessible parts

earlier in this document). [FS2000 & CFS2 only]. The more

useful ones follow:

Ok Ok

04B4 2 FS2K ADVENTURE WEATHER: This provides the

TEMPERATURE_SURFACE_ALT in metres. This is used to provide

the METAR reporting station altitude so that the cloud bases can

be converted to AGL.

Ok Ok

04BA 2 FS2K ADVENTURE WEATHER: This provides the WIND_SURF_TURB

which is used to provide the surface wind‘s upper gust speed in

knots, with zero indicating no gusts.

Ok Ok

04BC 2 FS2K ADVENTURE WEATHER: This provides the

BAROMETRIC_DRIFT variable, which is used to provide the

difference between the current aircraft position QNH (which may

be in transition), and the METAR reported QNH as set by the

weather control program. Adding this ‗drift‘ value to the pressure

will give the correct value for ATIS reports

Ok Ok

04C0 2 FS2K ADVENTURE WEATHER: This provides the FSUIPC_VISIBILITY

in statute miles * 100

Ok Ok

04C2 2 FS2K ADVENTURE WEATHER: This provides the

CLOUD_THUNDER_BASE in metres AMSL

Ok Ok

04C4 2 FS2K ADVENTURE WEATHER: This provides the

CLOUD_LOW_BASE in metres AMSL

Ok Ok

04C6 2 FS2K ADVENTURE WEATHER: This provides the

CLOUD_HIGH_BASE in metres AMSL

Ok Ok

04C8 2 Dew point as degrees C *256, for the surface temperature layer,

FS2k/CFS2 read only

Ok Ok

04CB 1 Precipitation rate, 0–5, FS2k/CFS2 read only. Note that in

FS2004, rate 0 = light drizzle. Type=0 is no rain/snow

Ok Ok

04CC 1 Precipitation type, 0=none, 1=rain, 2=snow, FS2k/CFS2 read

only.

Ok Ok

04CD 1 FS2K ADVENTURE WEATHER: This provides the

CLOUD_THUNDER_COVER 0–8

Ok Ok

04CE 1 FS2K ADVENTURE WEATHER: This provides the

CLOUD_LOW_COVER 0–8

Ok Ok

04CF 1 FS2K ADVENTURE WEATHER: This provides the

CLOUD_HIGH_COVER 0–8

Ok Ok

04D2 2 Precipitation control: write hi-byte=type 0–2 (see above), low

byte=rate 0–5. Write 0xFFFF to release control back to

FS2k/CFS2.

Ok Ok

04D4 2 Dew point control: degrees C * 256. Sets surface layer dewpoint

only, FSUIPC does rest. Write 0x8000 to release control back to

FS2k/CFS2.

Ok Ok

04D8 2 Surface layer wind speed, in knots (FS2k/CFS2). This may be

different to the current wind speed at the aircraft—see offset

0E90. This also provides WIND_SURF_VEL for FS2k Adventures.

Ok Ok

04DA 2 Surface layer wind direction, *360/65536 to get degrees Ok Ok

MAGNETIC (FS2k/CFS2). This may be different to the current

wind direction at the aircraft—see offset 0E92. This also

provides WIND_SURF_DIR for FS2k Adventures.

04E0 88 Area reserved for Project Magenta Ok Ok

0538 8 Design speed VS0 (stall speed full flaps), ft/sec, as a double (64-

bit floating point).

No Ok

0540 8 Design speed VS1 (stall speed clean), ft/sec, as a double (64-bit

floating point).

No Ok

0548 8 Design speed VC (cruise speed), ft/sec, as a double (64-bit

floating point).

No Ok

0550 8 Minimum drag velocity, ft/sec, as a double (64-bit floating

point).

No Ok

0560 8 Latitude of aircraft in FS units.

To convert to Degrees:

If your compiler supports long long (64-bit) integers then use

such a variable to simply copy this 64-bit value into a double

floating point variable and multiply by 90.0/(10001750.0 *

65536.0 * 65536.0).

Otherwise you will have to handle the high 32-bits and the low

32-bits separately, combining them into one double floating

point value (say dHi). To do, copy the high part (the 32-bit int at

0564) to one double and the low part (the 32-bit unsigned int at

0560) to another (say dLo). Remember that the low part is only

part of a bigger number, so doesn‘t have a sign of its own.

Divide dLo by (65536.0 * 65536.0) to give it its proper

magnitude compared to the high part, then either add it to or

subtract it from dHi according to whether dHi is positive or

negative. This preserves the integrity of the original positive or

negative number. Finally multiply the result by 90.0/10001750.0

to get degrees.

Either way, a negative result is South, positive North.

[Can be written to move aircraft: in FS2002 only in slew or pause

states]

Ok but

different

Ok

(can set

in all

modes)

0568 8 Longitude of aircraft in FS format.

To convert to Degrees:

If your compiler supports long long (64-bit) integers then use

such a variable to simply copy this 64-bit value into a double

floating point variable and multiply by 360.0/(65536.0 * 65536.0

* 65536.0 * 65536.0).

Otherwise you will have to handle the high 32-bits and the low

32-bits separately, combining them into one double floating

point value (say dHi). To do, copy the high part (the 32-bit int at

056C) to one double and the low part (the 32-bit unsigned int at

0568) to another (say dLo). Remember that the low part is only

part of a bigger number, so doesn‘t have a sign of its own.

Divide dLo by (65536.0 * 65536.0) to give it its proper

magnitude compared to the high part, then either add it to or

subtract it from dHi according to whether dHi is positive or

negative. This preserves the integrity of the original positive or

negative number. Finally multiply the result by 360.0/(65536.0 *

65536.0) to get degrees.

Either way, a negative result is West, positive East. If you did it

all unsigned then values over 180.0 represent West longitudes of

(360.0 – the value).

[Can be written to move aircraft: in FS2002 only in slew or pause

states]

Ok but

different

Ok

(can set

in all

modes)

0570 8 Altitude, in metres and fractional metres. The units are in the

high 32-bit integer (at 0574) and the fractional part is in the low

32-bit integer (at 0570). [Can be written to move aircraft: in

FS2002 only in slew or pause states]

Ok but

different

Ok

(can set

in all

modes)

0578 4 Pitch, *360/(65536*65536) for degrees. 0=level, –ve=pitch up,

+ve=pitch down

[Can be set in slew or pause states]

Ok Ok

(can set

in all

modes)

057C 4 Bank, *360/(65536*65536) for degrees. 0=level, –ve=bank right,

+ve=bank left

[Can be set in slew or pause states]

Ok Ok

(can set

in all

modes)

0580 4 Heading, *360/(65536*65536) for degrees TRUE.

[Can be set in slew or pause states]

Ok Ok

(can set

in all

modes)

05B0 24 The viewpoint Latitude (8 bytes), Longitude (8 bytes) and

Altitude (8 bytes) in the same format as 0560–0577 above. This

is read only and seems to relate to the position of the viewer

whether in cockpit, tower or spot views.

Ok Ok

05C8 4 The viewpoint Pitch, *360/(65536*65536) for degrees. 0=level,

–ve=pitch up, +ve=pitch down. [Read only]

Ok Ok

05CC 4 The viewpoint Bank, *360/(65536*65536) for degrees. 0=level,

–ve=bank right, +ve=bank left. [Read only]

Ok Ok

05D0 4 The viewpoint Heading, *360/(65536*65536) for degrees

TRUE. [Read only]

Ok Ok

05D4 2 Smoke system available if True NO

05D8 2 Smoke system enable: write 1 to switch on, 0 to switch off (see

also 05D4)

Ok Ok

05DC 2 Slew mode (indicator and control), 0=off, 1=on. (See 05DE

also).

Ok Ok but

not like

FS2002

05DE 2 Slew control: write non-zero value here at same time as changing

05DC above, and the Slew mode change includes the swapping

of the assigned joystick axes. [ignored in FS2004 – the axes are

swapped in any case. See offset 310B for control of axis

connection in slew mode]

Ok No

05E4 2 Slew roll rate: 0=static, –ve = right roll, +ve=left roll, rate is such

that 192 gives a complete 360 roll in about one minute.

Ok Ok

05E6 2 Slew yaw rate: 0=heading constant, –ve = right, +ve=left, rate is

such that 24 gives a complete 360 turn in about one minute.

Ok Ok

05E8 2 Slew vertical rate: 16384=no change, 16385–32767 increasing

rate down, 16383–0 increasing rate up. One keypress on Q (up)

or A (down) makes a change of 512 units.

Ok Ok

05EB 1 Slew forward/backward movement: +ve=backward, –

ve=forward. Values 1–127 give slow to fast slewing (–128 is the

fastest forward slew).

Ok Ok

05ED 1 Slew left/right movement: +ve=right, –ve=left. Values 1–127

give slow to fast sideways slewing (–128 is the fastest leftward

slew).

Ok Ok

05EE 2 Slew pitch rate: 16384=no change, <16384=pitch up, >16384

pitch down, range 0–32767.

Ok Ok

05F4 2 Slew mode display: 0=off, 1=coords/hdg/spd, 2=fps, 3=all Ok Ok

05FC 2 Flight mode display: 0=off, 1=coords/hdg/spd, 2=fps, 3=all Ok Ok

0609 1 Engine type: 0=Piston (and some FS2004 Helos), 1=Jet,

2=Sailplane, 3=Helo, 4=Rocket, 5=Turboprop

Ok Ok

060C 2 Gear type. 0=non-retractable standard, 1=retractable, 2=slides No No

060E 2 Retractable gear flag (0 if not, 1 if retractable) No No

0612 2 Display IAS if TRUE, TAS otherwise No No

0628 4 Instant replay flag & control, 1=on, 0=off. Can write to turn on

and off whilst there is still time to play (see offset 062C)

Ok Ok

062C 4 Instant replay: time left to run, in seconds. Whilst this is non- Ok Ok

zero, the flag in offset 0628 controls the playback.

06D0 144 Area used for operating, controlling and configuring the facilities

in FSUIPC for feedback flight control (bank, pitch, speed, yaw).

For full details of this please see the separate TXT

documentation in the SDK.

Ok Ok

0760 4? Video recording flag, 1=on, 0=off Ok Ok

0764 4 Autopilot available Ok Ok

0768 4 Autopilot V/S hold available No No

076C 4 Autothrottle airspeed hold available No No

0770 4 Autothrottle mach hold available No No

0774 4 Autothrottle RPM hold available No No

0778 4 Flaps available Ok Ok

077C 4 Stall horn available Ok

0780 4 Engine mixture available Ok Ok

0784 4 Carb heat available Ok Ok

0788 4 Pitot heat available No No

078C 4 Spoiler available Ok Ok

0790 4 Aircraft is tail dragger Ok Ok

0794 4 Strobes available Ok Ok

0798 4 Prop type available No No

079C 4 Toe brakes available Ok Ok

07A0 4 NAV1 available Ok Ok

07A4 4 NAV2 available Ok Ok

07A8 4 Marker indicators available No No

07AC 4 NAV1 OBS available No No

07B0 4 NAV2 OBS available No No

07B4 4 VOR2 gauge available No No

07B8 4 Gyro drift available No No

07BC 4 Autopilot Master switch Ok Ok

07C0 4 Autopilot wing leveller Ok Ok

07C4 4 Autopilot NAV1 lock Ok Ok

07C8 4 Autopilot heading lock Ok Ok

07CC 2 Autopilot heading value, as degrees*65536/360 Ok Ok

07D0 4 Autopilot altitude lock Ok Ok

07D4 4 Autopilot altitude value, as metres*65536 Ok Ok

07D8 4 Autopilot attitude hold Ok Ok

07DC 4 Autopilot airspeed hold Ok Ok

07E2 2 Autopilot airspeed value, in knots Ok Ok

07E4 4 Autopilot mach hold Ok Ok

07E8 4 Autopilot mach value, as Mach*65536 Ok Ok

07EC 4 Autopilot vertical speed hold [Not connected in FS2002/4] No No

07F2 2 Autopilot vertical speed value, as ft/min Ok Ok

07F4 4 Autopilot RPM hold ?

07FA 2 Autopilot RPM value ?? ?

07FC 4 Autopilot GlideSlope hold

N.B. In at least FS2002 and FS2004 (and maybe FS2000 as well)

setting this also sets 0800, approach hold. To clear both you need

to write 0 to them in the same FSUIPC process call, as if they are

separated by an FS frame, an interlock stops them clearing.

Ok Ok

0800 4 Autopilot Approach hold.

See the note above, for offset 07FC.

Ok Ok

0804 4 Autopilot Back course hold.

The note for offset 07FC may also apply here.

Ok Ok

0808 4 Yaw damper Ok Ok

080C 4 Autothrottle TOGA (take off power) Ok Ok

0810 4 Autothrottle Arm Ok Ok

0814 4 Flight analysis mode (0=0ff, 1=Landing, 2=Course tracking,

3=Manoevres)

No

0830 4 Action on crash (0=ignore, 1=reset, 2=graph). [Graph mode not

applicable to FS2002]

Ok, but

different

Ok

As

FS2002

0834 4 [FS2002/4 only]: DME2 Latitude when available separately.

Same units as in 085C above.

Only Yes, but it

is

position

of actual

antenna

0838 4 [FS2002/4 only]: DME2 Longitude when available separately.

Same units as in 0864 above.

Only Yes, but it

is

position

of actual

antenna

083C 4 [FS2002/4 only]: DME2 elevation in metres when available

separately.

Only Yes, but it

is

position

of actual

antenna

0840 2 Crashed flag Ok Ok

0842 2 Vertical speed in metres per minute, but with –ve for UP, +ve for

DOWN. Multiply by 3.28084 and reverse the sign for the normal

fpm measure. This works even in slew mode (except in FS2002).

Ok – but

not in

slew

mode

Ok (in

slew

mode

too!)

0844 2 NAV2 ILS localiser inverse runway heading if VOR2 is ILS.

Convert to degrees by *360/65536. This is 180 degrees different

to the direction of flight to follow the localiser. [FS2002+]

Ok Ok

0846 2 NAV2 ILS glideslope inclination if VOR2 is ILS. Convert to

degrees by *360/65536. [FS2002+]

Ok Ok

0848 2 Off-runway crash detection No No

084A 2 Can collide with dynamic scenery No

084C 4 VOR2 Latitude, as in 085C above, except when NAV2 is tuned

to an ILS, in which case this gives the localiser Latitude.

[FS2002 and later]

Only Yes, but it

is

position

of actual

antenna

0850 4 [FS2002/4 only]: VOR2 Longitude, as in 0864 above, except

when NAV2 is tuned to an ILS, in which case this gives the

localiser Longitude.

Only Yes, but it

is

position

of actual

antenna

0854 4 [FS2002/4 only]: VOR2 Elevation, as in 086C above, except

when NAV2 is tuned to an ILS, in which case this gives the

localiser Elevation.

Only Yes, but it

is

position

of actual

antenna

0858 4 VOR2 Latitude in FS form. Convert to degrees by

*90/10001750. If NAV2 is tuned to an ILS this gives the

glideslope transmitter Latitude. [FS2002+]

Ok Yes, but it

is

position

of actual

antenna

085C 4 VOR1 Latitude in FS form. Convert to degrees by

*90/10001750.If NAV1 is tuned to an ILS this gives the

glideslope transmitter Latitude.

Ok Yes, but it

is

position

of actual

antenna

0860 4 VOR2 Longitude in FS form. Convert to degrees by

*360/(65536*65536). If NAV2 is tuned to an ILS this gives the

glideslope transmitter Longitude. [FS2002+]

Ok Yes, but it

is

position

of actual

antenna

0864 4 VOR1 Longitude in FS form. Convert to degrees by

*360/(65536*65536). If NAV1 is tuned to an ILS this gives the

glideslope transmitter Longitude.

Ok Yes, but it

is

position

of actual

antenna

0868 4 VOR2 Elevation in metres. If NAV2 is tuned to an ILS this gives

the glideslope transmitter Elevation. [FS2002+]

Ok Yes, but it

is

position

of actual

antenna

086C 4 VOR1 Elevation in metres. If NAV1 is tuned to an ILS this gives

the glideslope transmitter Elevation.

Ok Yes, but it

is

position

of actual

antenna

0870 2 NAV1 ILS localiser inverse runway heading if VOR1 is ILS.

Convert to degrees by *360/65536. This is 180 degrees different

to the direction of flight to follow the localiser.

Ok Ok

0872 2 NAV1 ILS glideslope inclination if VOR1 is ILS. Convert to

degrees by *360/65536

Ok Ok

0874 4 VOR1 Latitude, as in 085C above, except when NAV1 is tuned

to an ILS, in which case this gives the localiser Latitude.

[FS2002 and later]

Only Yes, but it

is

position

of actual

antenna

0878 4 [FS2002/4 only]: VOR1 Longitude, as in 0864 above, except

when NAV1 is tuned to an ILS, in which case this gives the

localiser Longitude.

Only Yes, but it

is

position

of actual

antenna

087C 4 [FS2002/4 only]: VOR1 Elevation, as in 086C above, except

when NAV1 is tuned to an ILS, in which case this gives the

localiser Elevation.

Only Yes, but it

is

position

of actual

antenna

0880 4 [FS2002/4 only]: DME1 Latitude when available separately.

Same units as in 085C above.

Only Yes, but it

is

position

of actual

antenna

0884 4 [FS2002/4 only]: DME1 Longitude when available separately.

Same units as in 0864 above.

Only Yes, but it

is

position

of actual

antenna

0888 1 Active engine (select) flags. Bit 0 = Engine 1 selected … Bit 3 =

Engine 4 selected. See notes against offset 0892.

Ok Ok

0889 1 Rotor clutch switch, when applicable. 1=On, 0=Off. Can be read

and written. [FS2004 only]

No Ok

088A 2 [FS2002/4 only]: DME1 Elevation in metres, when available

separately.

Only Yes, but it

is

position

of actual

antenna

088C 152 ENGINE 1 values, as detailed below

088C 2 Engine 1 Throttle lever, –4096 to +16384

[Programs controlling throttle directly from user inputs should

write to 089A instead if the input should be disconnectable via

offset 310A (e.g. for auto-throttle management)]

Ok Ok

088E 2 Engine 1 Prop lever, –4096 to +16384 Ok Ok

0890 2 Engine 1 Mixture lever, 0 – 16384 Ok Ok

0892 2 Engine 1 Starter switch position (Magnetos),

 Jet/turbojet: 0=Off, 1=Start, 2=Gen

 Prop: 0=Off, 1=right, 2=Left, 3=Both, 4=Start

Notes (for FS2K/CFS2):

 Don‘t forget to switch fuel on to start (mixture to max).

 For FS2k type starting you need to set the ‗Start‘ value here

and monitor the combustion flag (below). When that is set,

change the starter switch to another position (Both or Gen).

FS98 models start immediately but you should still adopt the

same procedure.

 The Engine addressed by writes to this and the equivalent

Engine 2–4 offsets will become selected (see 0888 above). It

needs to stay selected during engine start, which means you

can only start engines in sequence, not together. The original

Ok Ok

selection is restored automatically, however—but only when

the starter is ‗released‘ by writing a non-start value here.

 FS98 prop planes transposed to FS2000 have misbehaving

Magneto/Starter switch controls (whether FSUIPC is

installed or not). You can start engines okay, but don‘t

expect to be able to select the Magnetos reliably.

0894 2 Engine 1 combustion flag (TRUE if engine firing) Ok Ok

0896 2 Engine 1 Jet N2 as 0 – 16384 (100%). This also appears to be

the Turbine RPM % for proper helo models (and now also for

the FS2004 Robinson model and derivatives)

Ok Ok

0898 2
Engine 1 Jet N1 as 0 – 16384 (100%), or Prop RPM (derive

RPM by multiplying this value by the RPM Scaler (see 08C8)

and dividing by 65536). Note that Prop RPM is signed and

negative for counter-rotating propellers.

In FS2004 this also now gives the Robinson model‘s RPM, when

scaled by the RPM scaler.

Ok Ok

089A 2 Engine 1 Throttle lever, –4096 to +16384, same as 088C above

except that values written here are treated like axis inputs and are

disconnectable via offset 310A, and have the last written value

obtainable from offset 3330

Ok Ok

08A0 2 Engine 1 Fuel Flow PPH SSL (pounds per hour, standardised to

sea level). Don‘t know units, but it seems to match some gauges

if divided by 128. Not maintained in all cases.

Ok Ok

08B2 2 Engine 1 Anti-Ice or Carb Heat switch (1=On) Ok Ok

08B8 2 Engine 1 Oil temperature, 16384 = 140 C. Ok Ok

08BA 2 Engine 1 Oil pressure, 16384 = 55 psi. Not that in some FS2000

aircraft (the B777) this can exceed the 16-bit capacity of this

location. FSUIPC limits it to fit, i.e.65535 = 220 psi

Ok Ok

08BC 2 Engine 1 Pressure Ratio (where calculated): 16384 = 1.60 Ok Ok

08BE 2 Engine 1 EGT, 16384 = 860 C. [Note that for Props this value is

not actually correct. For FS2004 at least you will get the correct

value from 3B70. In FS2004 the value here has been derived by

FSUIPC to be compatible with FS2002 et cetera]

Ok Ok, but

see text

08C0 2 Engine 1 Manifold Pressure: Inches Hg * 1024 Ok Ok

08C8 2 Engine 1 RPM Scaler: For Props, use this to calculate RPM – see

offset 0898
(On turboprops this will give the shaft RPM, since there is currently no
Gear Reduction Ratio available to fix values on such aircraft)

Ok Ok

08D0 4 Engine 1 Oil Quantity: 16384 = 100% On FS2000 FSUIPC

usually has to derive this from a leakage value as it isn‘t provided

directly.

Ok Ok

08D4 4
Engine 1 Vibration: 16384 = 5.0. This is a relative measure of

amplitude from the sensors on the engine which when too high is

an indication of a problem. The value at which you should be

concerned varies according to aircraft and engine.

Ok Ok

08D8 4 Engine 1 Hydraulic pressure: appears to be 4*psi Ok Ok

08DC 4 Engine 1 Hydraulic quantity: 16384 = 100% Ok Ok

08E8 8 Engine 1 CHT, degrees F in double floating point (FLOAT64) Ok Ok

08F0 4 Engine 1 Turbine temperature: degree C *16384, valid for

FS2004 helo models

Ok Ok

08F4 4 Engine 1 Torque % (16384 = 100%), valid for FS2004 helo

models

Ok Ok

08F8 4 Engine 1 Fuel pressure, psf (i.e. psi*144): not all aircraft files

provide this, valid for FS2004 helo models.

Ok? Ok

08FC 2? Engine 1 electrical load, possibly valid for FS2004 helo models. Ok?

0900 4 Engine 1 Transmission oil pressure (psi * 16384): for helos Ok? Ok

0904 4 Engine 1 Transmission oil temperature (degrees C * 16384): for

helos

Ok? Ok

0908 4 Engine 1 Rotor RPM % (16384=100%): for helos Ok? Ok

0918 8 Engine 1 Fuel Flow Pounds per Hour, as floating point double

(FLOAT64)

Ok Ok

0920 4 Engine 1 Torque, in FLOAT32 format, probably in ft-lbs. (not

jets)

No Ok

0924 152 ENGINE 2 values, as detailed below As ENG1 As ENG1

0924 2 Engine 2 Throttle lever, –4096 to +16384

[Programs controlling throttle directly from user inputs should

write to 0932 instead if the input should be disconnectable via

offset 310A (e.g. for auto-throttle management)]

| |

0926 2 Engine 2 Prop lever, –4096 to +16384 | |

0928 2 Engine 2 Mixture lever, 0 – 16384 | |

092A 2 Engine 2 Starter switch position (Magnetos),

Jet/turbo: 0=Off, 1=Start, 2=Gen; Prop: 0=Off, 1=right, 2=Left,

3=Both, 4=Start

(See Notes in Engine 1 entry)

| |

092C 2 Engine 2 combustion flag (TRUE if engine firing) | |

092E 2 Engine 2 Jet N2 as 0 – 16384 (100%) | |

0930 2 Engine 2 Jet N1 as 0 – 16384 (100%), or Prop RPM (derive

RPM by multiplying this value by the RPM Scaler (see 08C8)

and dividing by 65536). Note that Prop RPM is signed and

negative for counter-rotating propellers.

| |

0932 2 Engine 2 Throttle lever, –4096 to +16384, same as 088C above

except that values written here are treated like axis inputs and are

disconnectable via offset 310A, and have the last written value

obtainable from offset 3332

Ok Ok

0938 2 Engine 2 Fuel Flow PPH SSL (pounds per hour, standardised to

sea level). Don‘t know units, but it seems to match some gauges

if divided by 128. Not maintained in all cases.

| |

094A 2 Engine 2 Anti-Ice or Carb Heat switch (1=On) | |

0950 2 Engine 2 Oil temperature, 16384 = 140 C. | |

0952 2 Engine 2 Oil pressure, 16384 = 55 psi. Not that in some FS2000

aircraft (the B777) this can exceed the 16-bit capacity of this

location. FSUIPC limits it to fit, i.e.65535 = 220 psi

| |

0954 2 Engine 2 Pressure Ratio (where calculated): 16384 = 1.60 | |

0956 2 Engine 2 EGT, 16384 = 860 C. [Note that for Props this value is

not actually correct. For FS2004 at least you will get the correct

value from 3AB0. In FS2004 the value here has been derived by

FSUIPC to be compatible with FS2002 et cetera]

| |

0958 2 Engine 2 Manifold Pressure: Inches Hg * 1024 | |

0960 2 Engine 2 RPM Scaler: For Props, use this to calculate RPM – see

offset 0930

| |

0968 4 Engine 2 Oil Quantity: 16384 = 100% On FS2000 FSUIPC

usually has to derive this from a leakage value as it isn‘t provided

directly.

| |

096C 4 Engine 2 Vibration: 16384 = 5.0. This is a relative measure of

amplitude from the sensors on the engine which when too high is

an indication of a problem. The value at which you should be

concerned varies according to aircraft and engine.

| |

0970 4 Engine 2 Hydraulic pressure: appears to be 4*psi | |

0974 4 Engine 2 Hydraulic quantity: 16384 = 100% | |

0980 8 Engine 2 CHT, degrees F in double floating point (FLOAT64) | |

0988 4 Engine 2 Turbine temperature: degree C *16384 | |

098C 4 Engine 2 Torque % (16384 = 100%) | |

0990 4 Engine 2 Fuel pressure, psf (i.e. psi*144): not all aircraft files

provide this.

| |

0998 4 Engine 2 Transmission pressure (psi * 16384): for helos | |

099C 4 Engine 2 Transmission temperature (degrees C * 16384): for

helos

| |

09A0 4 Engine 2 Rotor RPM % (16384=100%): for helos | |

09B0 8 Engine 2 Fuel Flow Pounds per Hour, as floating point double

(FLOAT64)

| |

09B8 4 Engine 2 Torque, in FLOAT32 format, probably in ft-lbs. (not

jets)

| |

09BC 152 ENGINE 3 values, as detailed below As ENG1 As ENG1

09BC 2 Engine 3 Throttle lever, –4096 to +16384

[Programs controlling throttle directly from user inputs should

write to 09CA instead if the input should be disconnectable via

offset 310A/B (e.g. for auto-throttle management)]

| |

09BE 2 Engine 3 Prop lever, –4096 to +16384 | |

09C0 2 Engine 3 Mixture lever, 0 – 16384 | |

09C2 2 Engine 3 Starter switch position (Magnetos),

Jet/turbo: 0=Off, 1=Start, 2=Gen; Prop: 0=Off, 1=right, 2=Left,

3=Both, 4=Start

(see Notes in Engine 1 entry)

| |

09C4 2 Engine 3 combustion flag (TRUE if engine firing) | |

09C6 2 Engine 3 Jet N2 as 0 – 16384 (100%) | |

09C8 2 Engine 3 Jet N1 as 0 – 16384 (100%), or Prop RPM (derive

RPM by multiplying this value by the RPM Scaler (see 08C8)

and dividing by 65536). Note that Prop RPM is signed and

negative for counter-rotating propellers.

| |

09CA 2 Engine 3 Throttle lever, –4096 to +16384, same as 088C above

except that values written here are treated like axis inputs and are

disconnectable via offset 310A/B, and have the last written value

obtainable from offset 3334

Ok Ok

09D0 2 Engine 3 Fuel Flow PPH SSL (pounds per hour, standardised to

sea level). Don‘t know units, but it seems to match some gauges

if divided by 128. Not maintained in all cases.

| |

09E2 2 Engine 3 Anti-Ice or Carb Heat switch (1=On) | |

09E8 2 Engine 3 Oil temperature, 16384 = 140 C. | |

09EA 2 Engine 3 Oil pressure, 16384 = 55 psi. Not that in some FS2000

aircraft (the B777) this can exceed the 16-bit capacity of this

location. FSUIPC limits it to fit, i.e.65535 = 220 psi

| |

09EC 2 Engine 3 Pressure Ratio (where calculated): 16384 = 1.60 | |

09EE 2 Engine 3 EGT, 16384 = 860 C. [Note that for Props this value is

not actually correct. For FS2004 at least you will get the correct

value from 39F0. In FS2004 the value here has been derived by

FSUIPC to be compatible with FS2002 et cetera]

| |

09F0 2 Engine 3 Manifold Pressure: Inches Hg * 1024 | |

09F8 2 Engine 3 RPM Scaler: For Props, use this to calculate RPM – see

offset 09C8

| |

0A00 4 Engine 3 Oil Quantity: 16384 = 100% On FS2000 FSUIPC

usually has to derive this from a leakage value as it isn‘t provided

directly.

| |

0A04 4 Engine 3 Vibration: 16384 = 5.0. This is a relative measure of

amplitude from the sensors on the engine which when too high is

an indication of a problem. The value at which you should be

concerned varies according to aircraft and engine.

| |

0A08 4 Engine 3 Hydraulic pressure: appears to be 4*psi | |

0A0C 4 Engine 3 Hydraulic quantity: 16384 = 100% | |

0A18 8 Engine 3 CHT, degrees F in double floating point (FLOAT64) | |

0A20 4 Engine 3 Turbine temperature: degree C *16384 | |

0A24 4 Engine 3 Torque % (16384 = 100%) | |

0A28 4 Engine 3 Fuel pressure, psf (i.e. psi*144): not all aircraft files

provide this.

| |

0A30 4 Engine 3 Transmission pressure (psi * 16384): for helos | |

0A34 4 Engine 3 Transmission temperature (degrees C * 16384): for

helos

| |

0A38 4 Engine 3 Rotor RPM % (16384=100%): for helos | |

0A48 8 Engine 3 Fuel Flow Pounds per Hour, as floating point double

(FLOAT64)

| |

0A50 4 Engine 3 Torque, in FLOAT32 format, probably in ft-lbs. (not

jets)

| |

0A54 152 ENGINE 4 values, as detailed below As ENG1 As ENG1

0A54 2 Engine 4 Throttle lever, –4096 to +16384

[Programs controlling throttle directly from user inputs should

write to 0A62 instead if the input should be disconnectable via

offset 310A/B (e.g. for auto-throttle management)]

| |

0A56 2 Engine 4 Prop lever, –4096 to +16384 | |

0A58 2 Engine 4 Mixture lever, 0 – 16384 | |

0A5A 2 Engine 4 Starter switch position (Magnetos),

Jet/turbo: 0=Off, 1=Start, 2=Gen; Prop: 0=Off, 1=right, 2=Left,

3=Both, 4=Start

(see Notes in Engine 1 entry)

| |

0A5C 2 Engine 4 combustion flag (TRUE if engine firing) | |

0A5E 2 Engine 4 Jet N2 as 0 – 16384 (100%) | |

0A60 2 Engine 4 Jet N1 as 0 – 16384 (100%), or Prop RPM (derive

RPM by multiplying this value by the RPM Scaler (see 08C8)

and dividing by 65536). Note that Prop RPM is signed and

negative for counter-rotating propellers.

| |

0A62 2 Engine 4 Throttle lever, –4096 to +16384, same as 088C above

except that values written here are treated like axis inputs and are

disconnectable via offset 310A/B, and have the last written value

obtainable from offset 3336

Ok Ok

0A68 2 Engine 4 Fuel Flow PPH SSL (pounds per hour, standardised to

sea level). Don‘t know units, but it seems to match some gauges

if divided by 128. Not maintained in all cases.

| |

0A7A 2 Engine 4 Anti-Ice or Carb Heat switch (1=On) | |

0A80 2 Engine 4 Oil temperature, 16384 = 140 C. | |

0A82 2 Engine 4 Oil pressure, 16384 = 55 psi. Not that in some FS2000

aircraft (the B777) this can exceed the 16-bit capacity of this

location. FSUIPC limits it to fit, i.e.65535 = 220 psi

| |

0A84 2 Engine 4 Pressure Ratio (where calculated): 16384 = 1.60 | |

0A86 2 Engine 4 EGT, 16384 = 860 C. [Note that for Props this value is

not actually correct. For FS2004 at least you will get the correct

value from 3930. In FS2004 the value here has been derived by

FSUIPC to be compatible with FS2002 et cetera]

| |

0A88 2 Engine 4 Manifold Pressure: Inches Hg * 1024 | |

0A90 2 Engine 4 RPM Scaler: For Props, use this to calculate RPM – see

offset 0A60

| |

0A98 4 Engine 4 Oil Quantity: 16384 = 100% On FS2000 FSUIPC

usually has to derive this from a leakage value as it isn‘t provided

directly.

| |

0A9C 4 Engine 4 Vibration: 16384 = 5.0. This is a relative measure of

amplitude from the sensors on the engine which when too high is

an indication of a problem. The value at which you should be

concerned varies according to aircraft and engine.

| |

0AA0 4 Engine 4 Hydraulic pressure: appears to be 4*psi | |

0AA4 4 Engine 4 Hydraulic quantity: 16384 = 100% | |

0AB0 8 Engine 4 CHT, degrees F in double floating point (FLOAT64) | |

0AB8 4 Engine 4 Turbine temperature: degree C *16384 | |

0ABC 4 Engine 4 Torque % (16384 = 100%) | |

0AC0 4 Engine 4 Fuel pressure, psf (i.e. psi*144): not all aircraft files

provide this.

| |

0AC8 4 Engine 4 Transmission pressure (psi * 16384): for helos | |

0ACC 4 Engine 4 Transmission temperature (degrees C * 16384): for

helos

| |

0AD0 4 Engine 4 Rotor RPM % (16384=100%): for helos | |

0AE0 8 Engine 4 Fuel Flow Pounds per Hour, as floating point double

(FLOAT64)

| |

0AE8 4 Engine 4 Torque, in FLOAT32 format, probably in ft-lbs. (not

jets)

| |

0AEC 2 Number of Engines Ok Ok

0AF0 2 Propeller pitch control: 0=Fixed, 1=Auto, 2=Manual. On FS2004

this is 0=fixed pitch, 1=constant speed, no differentiation

between auto and manual.

Ok Ok but

different

0AF4 2 Fuel weight as pounds per gallon * 256 Ok Ok

0AF8 2 Fuel tank selector: 0=None, 1=All, 2=Left, 3=Right, 4=LeftAux,

5=RightAux, 6=Centre, 7=Centre2, 8=Centre3, 9=External1,

10=External2, 11=Right Tip, 12=Left Tip, 14=Crossfeed LtoR,

15=Crossfeed RtoL.

According to information received, in FS2002 all of these except

the wing tip tanks can be selected and drained.

Ok Ok

0B00 2 Throttle lower limit, 16384=100%. (e.g. for aircraft with reverse

thrust this is normally:

 –4096 indicating 25% in reverse)

Ok Ok

0B0C 4 Mach Max Operating speed *20480 Ok No

0B18 8 Gyro suction in inches of mercury (Hg), floating point double

(FLOAT64)

Ok Ok

0B20 2 Sound control: 0 to switch off, 1 to switch on Ok Ok

0B24 2 Sound flag: reads 0 is off, 1 if on Ok Ok

0B4C 2 Ground altitude (metres). See 0020 for more accuracy. Ok Ok

0B60 2 Scenery complexity level, 0 – 4 in FS98, 0 – 5 in FS2000 on Ok Ok

0B64 1 Fail mode: 0 ok, ADF inoperable = 1 (both ADFs on FS2004) Ok

0B65 1 Fail mode: 0 ok, ASI inoperable = 1 Ok

0B66 1 Fail mode: 0 ok, Altimeter inoperable = 1 Ok

0B67 1 Fail mode: 0 ok, Attitude Indicator inoperable = 1 Ok

0B68 1 Fail mode: 0 ok, COM1 radio inoperable = 1

See also 3BD6 (FS2002/FS2004)

Ok

0B69 1 Fail mode: 0 ok, Mag Compass inoperable = 1 Ok

0B6A 1 Fail mode: 0 ok, Electrics inoperable = 1 Ok

0B6B 1 Fail mode: 0 ok, Engine inoperable = 1, extended for

FS2000/CFS2 for up to 4 individual engines: bit 0 =Engine 1 …

bit 3= Engine 4. (but note that this may not work for FS98

aircraft transposed into FS2k/CFS2).

Ok

0B6C 1 Fail mode: 0 ok, Fuel indicators inoperable = 1 Ok

0B6D 1 Fail mode: 0 ok, Direction Indicator inoperable = 1 Ok

0B6E 1 Fail mode: 0 ok, VSI inoperable = 1 Ok

0B6F 1 Fail mode: 0 ok, Transponder inoperable = 1 Ok

0B70 1 Fail mode: 0 ok, NAV radios inoperable = 1 (NAV1 only in

FS2002 and FS2004: see also 3BD6)

Ok

0B71 1 Fail mode: 0 ok, Pitot inoperable = 1 Ok

0B72 1 Fail mode: 0 ok, Turn coordinator inoperable = 1 Ok

0B73 1 Fail mode: 0 ok, Vacuum inoperable = 1 Ok

0B74 4 Fuel: centre tank level, % * 128 * 65536 Ok Ok

0B78 4 Fuel: centre tank capacity: US Gallons (see also offsets 1244–

for extra FS2k/CFS2 fuel tanks)

Ok Ok

0B7C 4 Fuel: left main tank level, % * 128 * 65536 Ok Ok

0B80 4 Fuel: left main tank capacity: US Gallons Ok Ok

0B84 4 Fuel: left aux tank level, % * 128 * 65536 Ok Ok

0B88 4 Fuel: left aux tank capacity: US Gallons Ok Ok

0B8C 4 Fuel: left tip tank level, % * 128 * 65536 Ok Ok

0B90 4 Fuel: left tip tank capacity: US Gallons Ok Ok

0B94 4 Fuel: right main tank level, % * 128 * 65536 Ok Ok

0B98 4 Fuel: right main tank capacity: US Gallons Ok Ok

0B9C 4 Fuel: right aux tank level, % * 128 * 65536 Ok Ok

0BA0 4 Fuel: right aux tank capacity: US Gallons Ok Ok

0BA4 4 Fuel: right tip tank level, % * 128 * 65536 Ok Ok

0BA8 4 Fuel: right tip tank capacity: US Gallons Ok Ok

0BAC 2 Inner Marker: activated when TRUE Ok Ok

0BAE 2 Middle Marker: activated when TRUE Ok Ok

0BB0 2 Outer Marker: activated when TRUE Ok Ok

0BB2 2 Elevator control input: –16383 to +16383 Ok Ok

0BB4 2 Elevator position indicator (maybe adjusted from input!) Ok Ok

0BB6 2 Aileron control input: –16383 to +16383 Ok Ok

0BB8 2 Aileron position indicator (maybe adjusted from input!) Ok Ok

0BBA 2 Rudder control input: –16383 to +16383 Ok Ok

0BBC 2 Rudder position indicator (maybe adjusted from input!) Ok Ok

0BBE 2 Helo pitch (elevator) trim control: –16383 to +16383, but only

when ―ApplyHeloTrim‖ set.

Ok Ok

0BC0 2 Elevator trim control input: –16383 to +16383 Ok Ok

0BC2 2 Elevator trim indicator (follows input) Ok Ok

0BC4 2 Left brake application read-out (0 off, 16383 full: parking

brake=16383). You can apply a fixed brake pressure here, or else

use the byte at 0C01 to apply brakes emulating the keypress.

[Note: In FS2002 reading this ranges up to 32767, i.e. twice the

written value.]

Ok

(but

different)

Ok

0BC6 2 Right brake application read-out (0 off, 16383 full: parking

brake=16383). You can apply a fixed brake pressure here, or else

use the byte at 0C00 to apply brakes emulating the keypress.

[Note: In FS2002 reading this ranges up to 32767, i.e. twice the

written value.]

Ok

(but

different)

Ok

0BC8 2 Parking brake: 0=off, 32767=on Ok Ok

0BCA 2 Braking indicator: brake applied if non-zero (16383=on, 0=off).

Note that in FS2002 this is artificially created by FSUIPC from

the previous three settings.

Ok

(but

different)

Ok

0BCC 4 Spoilers arm (0=off, 1=arm for auto deployment) Ok Ok

0BD0 4 Spoilers control, 0 off, 4800 arm, then 5620 (7%) to 16383

(100% fully deployed).

The 4800 value is set by arming. Values from 0 to somewhere

close to, but below, 4800 do nothing. The percentage extension

is the proportion of the distance in the range 4800 to 16383, even

though values 4800 to 5619 cannot be used—7% seems to be the

minimum.

[These details have now been verified on FS2000, FS2002 and

FS2004.]

Ok Ok

0BD4 4 Spoiler Left position indicator (0-16383) Ok Ok

0BD8 4 Spoiler Right position indicator (0-16383) Ok Ok

0BDC 4 Flaps control, 0=up, 16383=full. The ―notches‖ for different

aircraft are spaced equally across this range: calculate the

increment by 16383/(number of positions-1), ignoring fractions.

See also offset 3BFA below.

N.B. Do not expect to read this and see 100% accurate values.

For example, 3x2047=6141 for the 3
rd

 détente up. But FS2000,

at least, stores the flaps lever position in the FLT file as a % of

16384, and the percentage is stored to two decimal places. 6141

gets saved as 37.48% which converts back to 6140.7232 and this

gets truncated here as 6140. However, 6140/2047 = 2.9995

which is as close as you need. Just round if you are using

integers.

Ok Ok

0BE0 4 Flaps position indicator (left). Note that in FS2002 and FS2004

this gives the correct proportional amount, with 16383=full

Ok but

different

Ok

deflection. It doesn‘t correspond to the equally spaced notches

used for the control lever. If you know the maximum deflection

angle you can derive the current angle by ((max * position

indicator) / 16383).

Also, in FS2002 and FS2004 this only gives the inboard trailing

edge flaps. Please see offsets 30E0–30FF for greater details

where needed.

0BE4 4 Flaps position indicator (right). Note that in FS2002 and FS2004

this gives the correct proportional amount, with 16384=full

deflection. It doesn‘t correspond to the equally spaced notches

used for the control lever.

Also, in FS2002 and FS2004 this only gives the inboard trailing

edge flaps. Please see offsets 30E0–30FF for greater details

where needed.

Ok but

different

Ok

0BE8 4 Gear control: 0=Up, 16383=Down Ok Ok

0BEC 4 Gear position (nose): 0=full up, 16383=full down Ok Ok

0BF0 4 Gear position (right): 0=full up, 16383=full down Ok Ok

0BF4 4 Gear position (left): 0=full up, 16383=full down Ok Ok

0BF8 4 Unlimited visibility value, as 1600* statute miles. This is the

value set in the Display Quality Settings.

Ok Ok

0C00 1 Right toe brake control: 0 – 200, proportional braking with timed

decay

Ok Ok

0C01 1 Left toe brake control: 0 –200, proportional braking with timed

decay

Ok Ok

0C06 2 Helo bank (aileron) trim control: –16383 to +16383, but only

when ―ApplyHeloTrim‖ set to ‗Both‘.

Ok Ok

0C08 2 Steering tiller input value (FSUIPC optional axis), -16384 to

+16383, if calibrated

Ok Ok

0C0A 2 Rudder input value, -16384 to +16383, if calibrated Ok Ok

0C18 2 International units: 0=US, 1=Metric+feet, 2=Metric+metres Ok Ok

0C1A 2 Simulation rate *256 (i.e. 256=1x) Ok Ok

0C20 9 Local time in character format: ―hh:mm:ss‖ (with zero

terminator)

Ok Ok

0C29 5 DME1 distance as character string, either ―nn.n‖ or ―nnn.‖ (when

> 99.9 nm). The 5
th

 character may be a zero or a space. Don‘t

rely on it.

Ok Ok

0C2E 5 DME1 speed as character string, ―nnn‖ followed by either space

then zero or just zero.

Ok Ok

0C33 5 DME2 distance as character string, either ―nn.n‖ or ―nnn.‖ (when

> 99.9 nm). The 5
th

 character may be a zero or a space. Don‘t

rely on it.

Ok Ok

0C38 5 DME2 speed as character string, ―nnn‖ followed by either space

then zero or just zero.

Ok Ok

0C3E 2 Gyro drift amount (*360/65536 for degrees). Yes

0C44 2 Realism setting, 0 – 100 No No

0C46 2 Realism options, bits allocated (but not all used in FS2K,

necessarily):

 0 ??

 1 elevator trim ratchets (?)

 2 gyro drifts [FS2k ok]

 3 lights burn out

 4 fast throttle kills engine (?)

 5 manual light control for instruments [FS2k ok]

 6 pressure drifts (unlikely to apply to FS2k]

No?

0C48 1 NAV1 Localiser Needle: –127 left to +127 right Ok Ok

0C49 1 NAV1 Glideslope Needle: –127 up to +127 down Ok Ok

0C4A 1 NAV1 Back Course flags: Ok

 0 BC available

 1 Localiser tuned in

 2 On Back Course (?)

 7 Station active (even if no BC)

0C4B 1 NAV1 To/From flag: 0=not active, 1=To, 2=From Ok Ok

0C4C 1 NAV1 GS flag: TRUE if GS alive Ok Ok

0C4D 1 NAV1 code flags, bits used as follows:

0 DME available

1 TACAN

2 Voice available

3 No signal available

4 DME transmitter at GS transmitter

5 No back course

6 GS available

7 This is a localiser (else it‘s a VOR)

[FS2002+, Not yet tested]

0C4E 2 NAV1 OBS setting (degrees, 0–359) Ok Ok

0C50 2 NAV1 radial (*360/65536 for degrees). Note that this is in

degrees Magnetic for a VOR, but TRUE for an ILS LOC.

Ok Ok

0C52 4 NAV1 signal strength:

For Localisers, seems to be either 0 or 256

For VORs varies from 0 to over 1,000,000 when really close!

0C56 2 NAV1: relative bearing to VOR1, in degrees (0–359) Ok Ok

0C59 1 NAV2 Localiser Needle: –127 left to +127 right Ok Ok

0C5A 1 NAV2 Back Course flags:

 0 BC available

 1 Localiser tuned in

 2 On Back Course (?)

 7 Station active (even if no BC)

Ok Ok

0C5B 1 NAV2 To/From flag: 0=not active, 1=To, 2=From Ok Ok

0C5C 2 NAV2: relative bearing to VOR2, in degrees (0–359) Ok Ok

0C5E 2 NAV2 OBS setting (degrees, 0–359) Ok Ok

0C60 2 NAV2 radial (*360/65536 for degrees). Note that this is in

degrees Magnetic for a VOR, but TRUE for an ILS LOC.

Ok Ok

0C62 4 NAV2 signal strength:

For Localisers, seems to be either 0 or 256

For VORs varies from 0 to over 1,000,000 when really close!

0C6A 2 ADF1: relative bearing to NDB (*360/65536 for degrees, –ve

left, +ve right)

Ok Ok

0C6C 2 ADF1: dial bearing, where adjustable (in degrees, 1–360) Ok Ok

0C6E 1 NAV2 Glideslope Needle: –127 up to +127 down [FS2002+] Ok Ok

0C6F 1 NAV2 GS flag: TRUE if GS alive [FS2002+] Ok Ok

0C70 1 NAV2 code flags, bits used as follows:

8 DME available

9 TACAN

10 Voice available

11 No signal available

12 DME transmitter at GS transmitter

13 No back course

14 GS available

15 This is a localiser (else it‘s a VOR)

[FS2002+, Not yet tested]

0C92 2 Texture quality, 0–3, as on FS2K‘s slider in Display Quality Ok No

0D0C 2 Lights (FS2k/CFS2), a switch for each one (bits from lo to hi):

 0 Navigation

 1 Beacon

 2 Landing

 3 Taxi

 4 Strobes

Ok Ok

 5 Instruments

 6 Recognition

 7 Wing

8 Logo

9 Cabin

0D50 24 The Tower Latitude (8 bytes), Longitude (8 bytes) and Altitude

(8 bytes) in the same format as 0560–0577 above.

Ok Ok

0D6C 4 Parameter associated with any Macro or Lua call sent to the

following offset (0D70)

Ok Ok

0D70 40 Write here the complete identity string of a Macro control or Lua

program control in order to have FSUIPC execute it.

For a Macro, the string should begin with up to 16 characters

giving the .MCRO file name (just the name part, not the type),

and then, separated by a ‗:‘ character, the macro name within that

file—again, up to 16 characters. Spaces either side of the ‗:‘ are

optional.

For a Lua program operation, the actual Lua control should be

provided, followed (with one space or ‗:‘ separator) by the Lua

program name (without the .Lua suffix). The valid Lua controls

are:

 Lua, LuaDebug, LuaKill, LuaSet, LuaClear, LuaToggle

Note that a parameter should always be written first for the Set,

Clear and Toggle controls as this specifies the flag to be changed

(0–31). A parameter is never used with ―Lua Kill‖.

If a parameter is to be supplied, it should first be written to offset

0D6C, above. Otherwise whatever was last written there will be

supplied.

Ok Ok

0D98 2 International N/S setting: 2=North, 3=South Ok

0D9C 2 International E/W setting: 0=East, 1=West Ok

0DD6 2 Scenery BGL variable ―usrvar‖ (originally 0312h in BGL)

(*In FS2004 this is moved to globals by FSUIPC unless

„MoveBGLvariables=No‟)

Ok Ok*

0DD8 2 Scenery BGL variable ―usrvr2‖ (originally 0314h in BGL)

(*In FS2004 this is moved to globals by FSUIPC unless

„MoveBGLvariables=No‟)

Ok Ok*

0DDA 2 Scenery BGL variable ―usrvr3‖ (originally 0316h in BGL)

(*In FS2004 this is moved to globals by FSUIPC unless

„MoveBGLvariables=No‟)

Ok Ok*

0DDC 2 Scenery BGL variable ―usrvr4‖ (originally 0318h in BGL)

(*In FS2004 this is moved to globals by FSUIPC unless

„MoveBGLvariables=No‟)

Ok Ok*

0DDE 2 Scenery BGL variable ―usrvr5‖ (originally 031Ah in BGL)

(*In FS2004 this is moved to globals by FSUIPC unless

„MoveBGLvariables=No‟)

Ok Ok*

0DE2 2 Scenery BGL variable ―spar10‖ (originally 031Eh in BGL)

(doesn‟t appear to be supported at all in FS2004)

Ok No

0DE4 2 Scenery BGL variable ―spar11‖ (originally 0320h in BGL)

(doesn‟t appear to be supported at all in FS2004)

Ok No

0DE6 2 Scenery BGL variable ―spar12‖ (originally 0322h in BGL)

(doesn‟t appear to be supported at all in FS2004)

Ok No

0DE8 2 Scenery BGL variable ―spar13‖ (originally 0324h in BGL)

(doesn‟t appear to be supported at all in FS2004)

Ok No

0DEA 2 Scenery BGL variable ―spar14‖ (originally 0326h in BGL)

(doesn‟t appear to be supported at all in FS2004)

Ok No

0DEC 2 Scenery BGL variable ―spar15‖ (originally 0328h in BGL)

(doesn‟t appear to be supported at all in FS2004)

Ok No

0DEE 2 Scenery BGL variable ―spar16‖ (originally 032Ah in BGL)

(doesn‟t appear to be supported at all in FS2004)

Ok No

0DF0 2 Scenery BGL variable ―spar17‖ (originally 032Ch in BGL)

(doesn‟t appear to be supported at all in FS2004)

Ok No

0DF2 2 Scenery BGL variable ―spar18‖ (originally 032Eh in BGL)

(doesn‟t appear to be supported at all in FS2004)

Ok No

0E5A 2 EFIS active (1=enabled) ?

0E5C 2 EFIS VOR/ILS elevation in metres ?

0E5E 2 EFIS density: 0=thin, 1=medium, 2=thick ?

0E60 2 EFIS range: 0=short, 1=medium, 2=long ?

0E62 2 EFIS mode: 0=normal, 1=reset, 2=plot intercept ?

0E64 2 EFIS via VOR (2) or ILS (4) ?

0E66 2 EFIS NAV select (1 or 2) ?

0E68 2 EFIS display type: 0=rectangles, 1=telegraph poles, 2=yellow

brick road

?

0E84 1 Cloud type at aircraft, 1–10, if the aircraft is in a cloud layer.

Otherwise 0

Ok Ok

0E85 1 Cloud coverage at aircraft, 0–8 "Oktas" or eighths of the sky Ok Ok

0E86 2 Cloud icing level at aircraft 0–4 Ok Ok

0E88 2 Cloud turbulence level at aircraft, 0–255 (as for older offsets

0EFC etc).

Ok Ok

0E8A 2 Current visibility (Statue miles * 100) Ok Ok

0E8C 2 Outside Air Temperature (OAT), degrees C * 256 Ok Ok

0E8E 2 Dew point, degrees C * 256 [FS2004 only]. This is interpolated

for the aircraft altitude from the temperature layer specifications

below and above.

No Ok

0E90 2 Ambient wind speed (at aircraft) in knots Ok Ok

0E92 2 Ambient wind direction (at aircraft), *360/65536 to get degrees

Magnetic or True.

For compatibility with FS98, the direction is Magnetic for

surface winds (aircraft below the altitude set into offset 0EEE),

but True for all upper winds. See offset 02A0 for magnetic

variation and how to convert.

Ok Ok

0E94 2 Wind gusting value at aircraft (max speed in knots, or 0 if no

gusts)

Ok Ok

0E96 2 Wind directional variation at aircraft —degrees in the same units

as wind directions

Ok Ok

0E98 2 Wind turbulence value at aircraft, 0–255, just like offset 0ED2,

etc.

Ok Ok

0E9A 112 Current Weather as Set: details follow. [See 0F1C for Global

weather setting area]

On FS2000/CFS2 FSUIPC maps writes to this area to the

Global weather area starting at 0F1C, and reads from the

Global weather area to this Current weather area. Therefore

you may not always read back what you last wrote. The main

differences occur when FS local weather is in operation.

N.B. See also 0E8A above, which is the ―current‖ visibility

equivalent of the global setting at 0F8C.

Ok Ok

0E9A 2 Upper cloud layer ceiling in metres AMSL Ok Ok

0E9C 2 Upper cloud layer base in metres AMSL Ok Ok

0E9E 2 Upper cloud layer coverage, 65535 = 8 oktas, … 32768= 4 oktas

… 0 = clear

Ok Ok

0EA0 2 Upper cloud layer, cloud altitude variation (metres) Ok Ok

0EA2 2 Lower cloud layer ceiling in metres AMSL Ok Ok

0EA4 2 Lower cloud layer base in metres AMSL Ok Ok

0EA6 2 Lower cloud layer coverage, 65535 = 8 oktas, … 32768= 4 oktas

… 0 = clear

Ok Ok

0EA8 2 Lower cloud layer, cloud altitude variation (metres) Ok Ok

0EAA 2 Storm layer ceiling in metres AMSL Ok Ok

0EAC 2 Storm layer base in metres AMSL (if a Storm layer is present, it

must be the lowest, below ―Lower Cloud‖).

Ok Ok

0EAE 2 Storm cloud layer coverage, 65535 = 8 oktas, … 32768= 4 oktas

… 0 = clear

Ok Ok

0EB0 2 Storm cloud layer, cloud altitude variation (metres) Ok Ok

0EB2 2 Upper Temperature level, metres AMSL Ok Ok

0EB4 2 Upper Temperature in degrees C * 256 Ok Ok

0EB6 2 Middle Temperature level, metres AMSL Ok Ok

0EB8 2 Middle Temperature in degrees C * 256 Ok Ok

0EBA 2 Lower Temperature level, metres AMSL Ok Ok

0EBC 2 Lower Temperature in degrees C * 256 Ok Ok

0EBE 2 Surface Temperature level, metres AMSL (best to be the ground

elevation)

Ok Ok

0EC0 2 Surface Temperature in degrees C * 256 Ok Ok

0EC2 2 Temperature drift, degrees C *256 (not used in FS2k/CFS2?) Ok Ok

0EC4 2 Temperature day/night variation, degrees C *256 Ok Ok

0EC6 2 Pressure (QNH) as millibars (hectoPascals) *16. Ok Ok

0EC8 2 Pressure drift as millibars *16 (not used on FS2k/CFS2?) Ok Ok

0ECA 2 Upper wind ceiling, metres AMSL Ok Ok

0ECC 2 Upper wind base, metres AMSL Ok Ok

0ECE 2 Upper wind speed, knots Ok Ok

0ED0 2 Upper wind direction, *360/65536 gives degrees True Ok Ok

0ED2 2 Upper wind turbulence setting, 0 none, 64, 128, 192, 224, 255

worst

Ok Ok

0ED4 2 Upper wind gusts, enabled if True. Ok Ok

0ED6 2 Middle wind ceiling, metres AMSL Ok Ok

0ED8 2 Middle wind base, metres AMSL Ok Ok

0EDA 2 Middle wind speed, knots Ok Ok

0EDC 2 Middle wind direction, *360/65536 gives degrees True Ok Ok

0EDE 2 Middle wind turbulence setting, 0 none, 64, 128, 192, 224, 255

worst

Ok Ok

0EE0 2 Middle wind gusts, enabled if True. Ok Ok

0EE2 2 Lower wind ceiling, metres AMSL Ok Ok

0EE4 2 Lower wind base, metres AMSL Ok Ok

0EE6 2 Lower wind speed, knots Ok Ok

0EE8 2 Lower wind direction, *360/65536 gives degrees True Ok Ok

0EEA 2 Lower wind turbulence setting, 0 none, 64, 128, 192, 224, 255

worst

Ok Ok

0EEC 2 Lower wind gusts, enabled if True. Ok Ok

0EEE 2 Surface wind ceiling, metres AGL Ok Ok

0EF0 2 Surface wind speed, knots. [See also 04D8] Ok Ok

0EF2 2 Surface wind direction, *360/65536 gives degrees Magnetic (!).

[See also 04DA]

Ok Ok

0EF4 2 Surface wind turbulence setting, 0 none, 64, 128, 192, 224, 255

worst

Ok Ok

0EF6 2 Surface wind gusts, enabled if True. Ok Ok

0EF8 2 Upper cloud layer type: 0=user-defined, 1=cirrus, 8=stratus,

9=cumulus

Ok Ok

0EFA 2 Upper cloud layer icing: enabled if True Ok Ok

0EFC 2 Upper cloud layer turbulence (0 to 255 I think). Divided into

steps by FSUIPC for FS2k/CFS2.

Ok Ok

0EFE 2 Lower cloud layer type: 0=user-defined, 1=cirrus, 8=stratus,

9=cumulus

Ok Ok

0F00 2 Lower cloud layer icing: enabled if True Ok Ok

0F02 2 Lower cloud layer turbulence (0 to 255 I think). Divided into

steps by FSUIPC for FS2k/CFS2.

Ok Ok

0F04 2 Storm layer type: 10=storm. [FSUIPC allows this to be a third Ok Ok

and lowest layer of any type, for FS2k/CFS2, so then: 0=user-

defined, 1=cirrus, 8=stratus, 9=cumulus]

0F06 2 Storm layer icing: enabled if True Ok Ok

0F08 2 Storm layer turbulence (0 to 255 I think). Divided into steps by

FSUIPC for FS2k/CFS2.

Ok Ok

0F1C 114 Global Weather setting area: details follow. [See 0E9A for

Current weather setting area]

On FS2000/CFS2 FSUIPC maps reads from this area to the

Current weather area starting at 0E9A, and writes to the

Current weather area to this Global weather area. Therefore

you may not always read back what you last wrote. The main

differences occur when FS local weather is in operation.

Ok Ok

0F1C 2 Upper cloud layer ceiling in metres AMSL Ok Ok

0F1E 2 Upper cloud layer base in metres AMSL Ok Ok

0F20 2 Upper cloud layer coverage, 65535 = 8 oktas, … 32768= 4 oktas

… 0 = clear

Ok Ok

0F22 2 Upper cloud layer, cloud altitude variation (metres) Ok Ok

0F24 2 Lower cloud layer ceiling in metres AMSL Ok Ok

0F26 2 Lower cloud layer base in metres AMSL Ok Ok

0F28 2 Lower cloud layer coverage, 65535 = 8 oktas, … 32768= 4 oktas

… 0 = clear

Ok Ok

0F2A 2 Lower cloud layer, cloud altitude variation (metres) Ok Ok

0F2C 2 Storm layer ceiling in metres AMSL Ok Ok

0F2E 2 Storm layer base in metres AMSL (if a Storm layer is present, it

must be the lowest, below ―Lower Cloud‖).

Ok Ok

0F30 2 Storm cloud layer coverage, 65535 = 8 oktas, … 32768= 4 oktas

… 0 = clear

Ok Ok

0F32 2 Storm cloud layer, cloud altitude variation (metres) Ok Ok

0F34 2 Upper Temperature level, metres AMSL Ok Ok

0F36 2 Upper Temperature in degrees C * 256 Ok Ok

0F38 2 Middle Temperature level, metres AMSL Ok Ok

0F3A 2 Middle Temperature in degrees C * 256 Ok Ok

0F3C 2 Lower Temperature level, metres AMSL Ok Ok

0F3E 2 Lower Temperature in degrees C * 256 Ok Ok

0F40 2 Surface Temperature level, metres AMSL (set this to the ground

elevation of the weather reporting station)

Ok Ok

0F42 2 Surface Temperature in degrees C * 256 Ok Ok

0F44 2 Temperature drift, degrees C *256 (not used in FS2k/CFS2?) Ok Ok

0F46 2 Temperature day/night variation, degrees C *256 Ok Ok

0F48 2 Pressure (QNH) as millibars (hectoPascals) *16. Ok Ok

0F4A 2 Pressure drift as millibars *16 (not used on FS2k/CFS2?) Ok Ok

0F4C 2 Upper wind ceiling, metres AMSL Ok Ok

0F4E 2 Upper wind base, metres AMSL Ok Ok

0F50 2 Upper wind speed, knots Ok Ok

0F52 2 Upper wind direction, *360/65536 gives degrees True Ok Ok

0F54 2 Upper wind turbulence setting, 0 none, 64, 128, 192, 224, 255

worst

Ok Ok

0F56 2 Upper wind gusts, enabled if True. Ok Ok

0F58 2 Middle wind ceiling, metres AMSL Ok Ok

0F5A 2 Middle wind base, metres AMSL Ok Ok

0F5C 2 Middle wind speed, knots Ok Ok

0F5E 2 Middle wind direction, *360/65536 gives degrees True Ok Ok

0F60 2 Middle wind turbulence setting, 0 none, 64, 128, 192, 224, 255

worst

Ok Ok

0F62 2 Middle wind gusts, enabled if True. Ok Ok

0F64 2 Lower wind ceiling, metres AMSL Ok Ok

0F66 2 Lower wind base, metres AMSL Ok Ok

0F68 2 Lower wind speed, knots Ok Ok

0F6A 2 Lower wind direction, *360/65536 gives degrees True Ok Ok

0F6C 2 Lower wind turbulence setting, 0 none, 64, 128, 192, 224, 255

worst

Ok Ok

0F6E 2 Lower wind gusts, enabled if True. Ok Ok

0F70 2 Surface wind ceiling, metres AGL Ok Ok

0F72 2 Surface wind speed, knots. [See also 04D8] Ok Ok

0F74 2 Surface wind direction, *360/65536 gives degrees Magnetic (!).

[See also 04DA]

Ok Ok

0F76 2 Surface wind turbulence setting, 0 none, 64, 128, 192, 224, 255

worst

Ok Ok

0F78 2 Surface wind gusts, enabled if True. Ok Ok

0F7A 2 Upper cloud layer type: 0=user-defined, 1=cirrus, 8=stratus,

9=cumulus

Ok Ok

0F7C 2 Upper cloud layer icing: enabled if True Ok Ok

0F7E 2 Upper cloud layer turbulence (0 to 255 I think). Divided into

steps by FSUIPC for FS2k/CFS2.

Ok Ok

0F80 2 Lower cloud layer type: 0=user-defined, 1=cirrus, 8=stratus,

9=cumulus

Ok Ok

0F82 2 Lower cloud layer icing: enabled if True Ok Ok

0F84 2 Lower cloud layer turbulence (0 to 255 I think). Divided into

steps by FSUIPC for FS2k/CFS2.

Ok Ok

0F86 2 Storm layer type: 10=storm. [FSUIPC allows this to be a third

and lowest layer of any type, for FS2k/CFS2, so then: 0=user-

defined, 1=cirrus, 8=stratus, 9=cumulus]

Ok Ok

0F88 2 Storm layer icing: enabled if True Ok Ok

0F8A 2 Storm layer turbulence (0 to 255 I think). Divided into steps by

FSUIPC for FS2k/CFS2.

Ok Ok

0F8C 2 Visibility setting as 100 * statute miles Ok Ok

0FF0 272 Path and filename reading facility: see section in text preceding

this table

Ok Ok

115E 1 Time of day indicator, 1=Day, 2=Dusk or Dawn, 4=Night. Set

according to the local time, read for lighting effects and so on in

BGLs.

Ok Ok

11A2 1 Ground scenery shadows on/off (1=On, 2=Off). [not checked on

FS98 or FS2000]

Ok Ok

11A4 2 Aircraft shadows on/off. Can write to this to control them (1=

On, 0=Off). [not checked on FS98 or FS2000]

Ok Ok

11B6 1 Aircraft reflections on/off. (2=On, 1=Off). [not checked on FS98

or FS2000]

Ok Ok

11B8 2 G Force: copy of 11BA on touchdown. Ok Ok

11BA 2 G Force: units unknown, but /625 seems to give quite sensible

values.

Ok Ok

11BE 2 Angle of Attack. This is actually a relative value, giving in

%*32767 the difference between the current AofA and the

maximum angle of attack for the current aircraft. For a relative

measure of AofA calculate 100-(100*#/32767), where # is this

number. (Thanks to Sergey Khantsis for this clarification).

Note: later analysis leads me to believe that this is, in fact, an

Indicator angle rather than the actual AofA in any case, with the

angle expressed in usual FS units (360 degrees = 65536) and

with 180 degrees pointing to the 0.0 position (right and down

about 35 degrees in a Boeing type AofA indicator).

Ok

11C6 2 Mach speed *20480. Ok Ok

11D0 2 Total Air Temperature (TAT), degrees Celsius * 256 Ok Ok

11D4 4 This is an internal pointer, not for specific use by applications,

except that it can be used as a flag to indicate when it is possible

to read or write most of the simulation variables. When this

DWORD is zero FSUIPC cannot obtain correct values from

Ok Not

applicabl

e

SIM1.SIM (SIM1.DLL in FS2002) because either it isn‘t loaded

or because it is busy re-calculating values by reading and

processing Flight or aircraft files.

1244 4 Fuel: centre 2 tank level, % * 128 * 65536 [FS2k/CFS2 only] Ok Ok

1248 4 Fuel: centre 2 tank capacity: US Gallons [FS2k/CFS2 only] Ok Ok

124C 4 Fuel: centre 3 tank level, % * 128 * 65536 [FS2k/CFS2 only] Ok Ok

1250 4 Fuel: centre 3 tank capacity: US Gallons [FS2k/CFS2 only] Ok Ok

1254 4 Fuel: external 1 tank level, % * 128 * 65536 [FS2k/CFS2 only] Ok Ok

1258 4 Fuel: external 1 tank capacity: US Gallons [FS2k/CFS2 only] Ok Ok

125C 4 Fuel: external 2 tank level, % * 128 * 65536 [FS2k/CFS2 only] Ok Ok

1260 4 Fuel: external 2 tank capacity: US Gallons [FS2k/CFS2 only] Ok Ok

1274 2 Text display mode (eg for ATIS): =0 static, =1 scrolling

[FS2k/CFS2 only]. (Note that this is accessible in FS98 at 1254,

but this was discovered after the FS2k extra fuel information was

mapped.)

OK

132C 4 NAV/GPS switch, in FS2000 & FS2002. 0=NAV, 1=GPS Ok Ok

1334 4 Max Gross weight, lbs * 256. This is the maximum aircraft

weight including payload and fuel.

No Ok

13FC 4 Count of Payload Stations (FS2004 only) No Ok

1400 48 x n A set of Payload Station data, 48 bytes for each payload station

(the count is in 13FC above). [FS2004 only]. Each 48 byte entry

contains:

 double weight (lbs)

 double lateral distance from datum (feet)

 double vertical distance from datum (feet)

 double longitudinal distance from datum (feet)

 char Name[16]; // 16 char name, including 0 at end

There‘s room for up to 61 such stations here. If there are more

you can‘t access them this way.

These loadings can be changed, and this does have some effect,

but such changes are not being promulgated to the overall

weights (offsets 30C0, 30C8, 3BFC) nor balance (2EF8), and it

looks like they have to refreshed, as FS overrides them from time

to time. It has also been reported that FS can crash if a lot of

changes are made here, so care and full testing is needed.

No Ok

1F80 * Write-only area for a TCAS_DATA structure, used to add entries

to the TCAS data tables—see offset, below, and the section on

TCAS earlier in this document.

* The length of data written here is determined by the size of the

TCAS_DATA structure, currently 40 bytes (but read this from

offset F000).

Ok Ok

2000 8 Turbine Engine 1 N1 value (%) as a double (FLOAT64). This is

for jets and turboprops—it has no meaning on reciprocating prop

aircraft.

Ok Ok

2008 8 Turbine Engine 1 N2 value (%) as a double (FLOAT64). This is

for jets and turboprops—it has no meaning on reciprocating prop

aircraft.

Ok Ok

2010 8 Turbine Engine 1 corrected N1 value (%) as a double

(FLOAT64). This is for jets and turboprops—it has no meaning

on reciprocating prop aircraft.

Ok Ok

2018 8 Turbine Engine 1 corrected N2 value (%) as a double

(FLOAT64). This is for jets and turboprops—it has no meaning

on reciprocating prop aircraft.

Ok Ok

2020 8 Turbine Engine 1 corrected fuel flow (pounds per hour) as a

double (FLOAT64). This is for jets and turboprops—it has no

meaning on reciprocating prop aircraft.

Ok Ok

2028 8 Turbine Engine 1 max torque fraction (range 0.0–1.0) as a Ok Ok

double (FLOAT64). (Only tested on turboprops).

2030 8 Turbine Engine 1 EPR as a double (FLOAT64). This is for jets

and turboprops.

Ok Ok

2038 8 Turbine Engine 1 ITT (interstage turbine temperature) in degrees

Rankine, as a double (FLOAT64). This is for jets and

turboprops.

Ok Ok

2048 4 Turbine Engine 1 Afterburner switch (1 = on, 0 = off) Ok Ok

204C 8 Turbine Engine 1 jet thrust, in pounds, as a double (FLOAT64).

This is the jet thrust. See 2410 for propeller thrust (turboprops

have both).

Ok Ok

205C 4 Turbine Engine 1, number of fuel tanks available Ok Ok

2060 8 Turbine Engine 1 fuel flow (pounds per hour) as a double

(FLOAT64). This is for jets and turboprops.

Ok Ok

206C 8 Turbine Engine 1 bleed air pressure (pounds per square inch) as

a double (FLOAT64). This is for jets and turboprops.

Ok Ok

207C 8 Turbine Engine 1 reverser fraction, a double (FLOAT64), in the

range 0.0–1.0, providing the reverse as a proportion of the

maximum reverse throttle position.

Ok Ok

2100 8 Turbine Engine 2 N1 value (%) as a double (FLOAT64). This is

for jets and turboprops—it has no meaning on reciprocating prop

aircraft.

Ok Ok

2108 8 Turbine Engine 2 N2 value (%) as a double (FLOAT64). This is

for jets and turboprops—it has no meaning on reciprocating prop

aircraft.

Ok Ok

2110 8 Turbine Engine 2 corrected N1 value (%) as a double

(FLOAT64). This is for jets and turboprops—it has no meaning

on reciprocating prop aircraft.

Ok Ok

2118 8 Turbine Engine 2 corrected N2 value (%) as a double

(FLOAT64). This is for jets and turboprops—it has no meaning

on reciprocating prop aircraft.

Ok Ok

2120 8 Turbine Engine 2 corrected fuel flow (pounds per hour) as a

double (FLOAT64). This is for jets and turboprops—it has no

meaning on reciprocating prop aircraft.

Ok Ok

2128 8 Turbine Engine 2 max torque fraction (range 0.0–1.0) as a

double (FLOAT64). (Only tested on turboprops).

Ok Ok

2130 8 Turbine Engine 2 EPR as a double (FLOAT64). This is for jets

and turboprops.

Ok Ok

2138 8 Turbine Engine 2 ITT (interstage turbine temperature) in degrees

Rankine, as a double (FLOAT64). This is for jets and

turboprops.

Ok Ok

2148 4 Turbine Engine 2 Afterburner switch (1 = on, 0 = off) Ok Ok

214C 8 Turbine Engine 2 jet thrust, in pounds, as a double (FLOAT64).

This is the jet thrust. See 2510 for propeller thrust (turboprops

have both).

Ok Ok

215C 4 Turbine Engine 2, number of fuel tanks available Ok Ok

2160 8 Turbine Engine 2 fuel flow (pounds per hour) as a double

(FLOAT64). This is for jets and turboprops.

Ok Ok

216C 8 Turbine Engine 2 bleed air pressure (pounds per square inch) as

a double (FLOAT64). This is for jets and turboprops.

Ok Ok

217C 8 Turbine Engine 2 reverser fraction, a double (FLOAT64), in the

range 0.0–1.0, providing the reverse as a proportion of the

maximum reverse throttle position.

Ok Ok

2200 8 Turbine Engine 3 N1 value (%) as a double (FLOAT64). This is

for jets and turboprops—it has no meaning on reciprocating prop

aircraft.

Ok Ok

2208 8 Turbine Engine 3 N2 value (%) as a double (FLOAT64). This is

for jets and turboprops—it has no meaning on reciprocating prop

aircraft.

Ok Ok

2210 8 Turbine Engine 3 corrected N1 value (%) as a double Ok Ok

(FLOAT64). This is for jets and turboprops—it has no meaning

on reciprocating prop aircraft.

2218 8 Turbine Engine 3 corrected N2 value (%) as a double

(FLOAT64). This is for jets and turboprops—it has no meaning

on reciprocating prop aircraft.

Ok Ok

2220 8 Turbine Engine 3 corrected fuel flow (pounds per hour) as a

double (FLOAT64). This is for jets and turboprops—it has no

meaning on reciprocating prop aircraft.

Ok Ok

2228 8 Turbine Engine 3 max torque fraction (range 0.0–1.0) as a

double (FLOAT64). (Only tested on turboprops).

Ok Ok

2230 8 Turbine Engine 3 EPR as a double (FLOAT64). This is for jets

and turboprops.

Ok Ok

2238 8 Turbine Engine 3 ITT (interstage turbine temperature) in degrees

Rankine, as a double (FLOAT64). This is for jets and

turboprops.

Ok Ok

2248 4 Turbine Engine 3 Afterburner switch (1 = on, 0 = off) Ok Ok

224C 8 Turbine Engine 3 jet thrust, in pounds, as a double (FLOAT64).

This is the jet thrust. See 2610 for propeller thrust (turboprops

have both).

Ok Ok

225C 4 Turbine Engine 3, number of fuel tanks available Ok Ok

2260 8 Turbine Engine 3 fuel flow (pounds per hour) as a double

(FLOAT64). This is for jets and turboprops.

Ok Ok

226C 8 Turbine Engine 3 bleed air pressure (pounds per square inch) as

a double (FLOAT64). This is for jets and turboprops.

Ok Ok

227C 8 Turbine Engine 3 reverser fraction, a double (FLOAT64), in the

range 0.0–1.0, providing the reverse as a proportion of the

maximum reverse throttle position.

Ok Ok

2300 8 Turbine Engine 4 N1 value (%) as a double (FLOAT64). This is

for jets and turboprops—it has no meaning on reciprocating prop

aircraft.

Ok Ok

2308 8 Turbine Engine 4 N2 value (%) as a double (FLOAT64). This is

for jets and turboprops—it has no meaning on reciprocating prop

aircraft.

Ok Ok

2310 8 Turbine Engine 4 corrected N1 value (%) as a double

(FLOAT64). This is for jets and turboprops—it has no meaning

on reciprocating prop aircraft.

Ok Ok

2318 8 Turbine Engine 4 corrected N2 value (%) as a double

(FLOAT64). This is for jets and turboprops—it has no meaning

on reciprocating prop aircraft.

Ok Ok

2320 8 Turbine Engine 4 corrected fuel flow (pounds per hour) as a

double (FLOAT64). This is for jets and turboprops—it has no

meaning on reciprocating prop aircraft.

Ok Ok

2328 8 Turbine Engine 4 max torque fraction (range 0.0–1.0) as a

double (FLOAT64). (Only tested on turboprops).

Ok Ok

2330 8 Turbine Engine 4 EPR as a double (FLOAT64). This is for jets

and turboprops.

Ok Ok

2338 8 Turbine Engine 4 ITT (interstage turbine temperature) in degrees

Rankine, as a double (FLOAT64). This is for jets and

turboprops.

Ok Ok

2348 4 Turbine Engine 4 Afterburner switch (1 = on, 0 = off) Ok Ok

234C 8 Turbine Engine 4 jet thrust, in pounds, as a double (FLOAT64).

This is the jet thrust. See 2710 for propeller thrust (turboprops

have both).

Ok Ok

235C 4 Turbine Engine 4, number of fuel tanks available Ok Ok

2360 8 Turbine Engine 4 fuel flow (pounds per hour) as a double

(FLOAT64). This is for jets and turboprops.

Ok Ok

236C 8 Turbine Engine 4 bleed air pressure (pounds per square inch) as

a double (FLOAT64). This is for jets and turboprops.

Ok Ok

237C 8 Turbine Engine 4 reverser fraction, a double (FLOAT64), in the Ok Ok

range 0.0–1.0, providing the reverse as a proportion of the

maximum reverse throttle position.

2400 8 Propeller 1 RPM as a double (FLOAT64). This value is for

props and turboprops and is negative for counter-rotating

propellers.

Ok Ok

2408 8 Propeller 1 RPM as a fraction of the maximum RPM. (double) Ok Ok

2410 8 Propeller 1 thrust in pounds, as a double (FLOAT64). This is for

props and turboprops.

Ok Ok

2418 8 Propeller 1 Beta blade angle in radians, as a double (FLOAT64).

This is for props and turboprops.

Ok Ok

2500 8 Propeller 2 RPM as a double (FLOAT64). This value is for

props and turboprops and is negative for counter-rotating

propellers.

Ok Ok

2508 8 Propeller 2 RPM as a fraction of the maximum RPM. (double) Ok Ok

2510 8 Propeller 2 thrust in pounds, as a double (FLOAT64). This is for

props and turboprops.

Ok Ok

2518 8 Propeller 2 Beta blade angle in radians, as a double (FLOAT64).

This is for props and turboprops.

Ok Ok

2600 8 Propeller 3 RPM as a double (FLOAT64). This value is for

props and turboprops and is negative for counter-rotating

propellers.

Ok Ok

2608 8 Propeller 3 RPM as a fraction of the maximum RPM. (double) Ok Ok

2610 8 Propeller 3 thrust in pounds, as a double (FLOAT64). This is for

props and turboprops.

Ok Ok

2618 8 Propeller 3 Beta blade angle in radians, as a double (FLOAT64).

This is for props and turboprops.

Ok Ok

2700 8 Propeller 4 RPM as a double (FLOAT64). This value is for

props and turboprops and is negative for counter-rotating

propellers.

Ok Ok

2708 8 Propeller 4 RPM as a fraction of the maximum RPM. (double) Ok Ok

2710 8 Propeller 4 thrust in pounds, as a double (FLOAT64). This is for

props and turboprops.

Ok Ok

2718 8 Propeller 4 Beta blade angle in radians, as a double (FLOAT64).

This is for props and turboprops.

Ok Ok

281C 4 Master battery switch (1=On, 0=Off) Ok Ok

28C0 8 Ambient air density, in slugs per cubic foot, double floating

point. (FS2002+)

 Ok

28C8 8 Ambient air pressure, in lbs per square foot, double floating

point. (FS2002+)

 Ok

28D0 8 Static air temperature, in degrees Fahrenheit, double floating

point. (FS2002+)

 Ok

28D8 8 Static air temperature, in degrees Rankine, double floating point.

(FS2002+)

 Ok

28E0 8 ―Theta‖, or standard temperature ratio (i.e ambient air

temperature divided by standard ISO air temperature), double

floating point. (FS2002+)

 Ok

28E8 8 ―Delta‖, or standard pressure ratio (ambient pressure divided by

the ISO standard pressure, double floating point. (FS2002+)

 Ok

28F0 8 ―Sigma‖, or standard density ratio (ambient density divided by

the ISO standard density, double floating point. (FS2002+)

 Ok

2900 12 A.I. traffic control. Write all 3 32-bit values (i.e. 12 bytes)

together to send an FS control to a specific AI aircraft. The

values needed are:

 Bytes 0–3: Aircraft Id (from the TCAS table)

 Bytes 4–7: The FS Control (see published lists)

 Bytes 8–11: A parameter for the control, if needed

Note that most of the many hundreds of FS controls will have no

noticeable affect on the AI aircraft. Experimentation is needed. If

folks find out what does what, please let me know and I‘ll try to

Ok Ok

publish a collated guide as an appendix later.

FSUIPC offers one special extra control. Just set the aircraft ID

and an FS control of 0xFFFF (65535) and the aircraft will be

deleted.

Note that you can write these values in separate FSUIPC Writes,

but if you do the ID must be last, as it is only when this is written

that the control is activated.

290C 4 Number of Hot Joystick Button slots available for Application

Programs to use. Currently this is fixed at 56, representing the 56

DWORDs available in the following offsets:

Ok Ok

2910 224 56 DWORDs containing zero (when free for use), or a Hot

Joystick Button specification as detailed earlier in this document.

See also 32FF below.

Ok Ok

29F0 4 This DWORD provides a facility to set, clear or toggle any of

the virtual buttons at offset 3340 without needing to read

anything first. To do this, write to offset 29F0 a 32-bit value (4

bytes) made up as follows:

 Byte 0: Button Number on Joystick (0 - 31)

 Byte 1: Virtual Joystick Number (64 - 72)

 Byte 2: Action:

 0 = Toggle

 1 = Set (Press/On)

 2 = Clear (Release/Off).

 Byte 3: 0 (Reserved)

2A48 8 Folding wing (for reading), left percent, as double float.

[FS2002+]

Ok Ok

2A50 8 Folding wing (for reading), right percent, as double float.

[FS2002+]

Ok Ok

2A70 8 Canopy open, as double float. [FS2002+] Ok Ok

2A78 8 Water left rudder extended (double float) Ok

2A80 8 Water right rudder extended (double float) Ok

2A88 4 Water rudder handle position (BOOLean, I think?) Ok

2AAC 4 NAV1 course deviation needle (CDI), 32-bit float value, –127.0

left to +127.0 right

Ok Ok

2AB0 4 NAV1 glideslope needle (CDI), 32-bit float value, –127.0 up to

+127.0 down

Ok Ok

2AB4 4 NAV2 course deviation needle (CDI), 32-bit float value, –127.0

left to +127.0 right

Ok Ok

2AB8 4 NAV2 glideslope needle (CDI), 32-bit float value, –127.0 up to

+127.0 down

Ok Ok

2B00 8 Gyro compass heading (magnetic), including any drift.

64-bit floating point.

Ok Ok

2DC8 8 For FS2004 only, this is the wind at the aircraft in the lateral (X)

axis—relative to the aircraft orientation, in feet per second, as a

64-bit double.

No Ok

2DD0 8 For FS2004 only, this is the wind at the aircraft in the vertical

(Y) axis—relative to the aircraft orientation, in feet per second,

as a 64-bit double.

No Ok

2DD8 8 For FS2004 only, this is the wind at the aircraft in the

longitudinal (Z) axis—relative to the aircraft orientation, in feet

per second, as a 64-bit double.

No Ok

2DE0 8 For FS2004 only, Wind direction at the aircraft, in degrees True,

as a 64-bit double floating point – for writing, not reading. See

3490 for reading.

This can be written to directly affect the wind direction at the

aircraft. This value is set before FSUIPC performs any

smoothing or limiting actions, and effectively become the new

No Ok, but

see Note

**

target value. FSUIPC sustains this as a target for a maximum of

14 seconds, with the next write to the same location restarting

this timeout. After the timeout has been allowed to expire the

intended FS value will take over, with smoothing and so on if

enabled.

Note that wind direction set in this fashion is not reflected in any

weather data supplied by the weather system in FS nor FSUIPC.

It is acting locally to the aircraft and can be monitored by

Shift+Z or the ambient weather read-outs in FSUIPC.

2DE8 8 For FS2004 only, Wind speed at the aircraft, in knots, as a 64-bit

double floating point – for writing, not reading. See 3488 for

reading.

This can be written to directly affect the wind speed at the

aircraft. This value is set before FSUIPC performs any

smoothing or limiting actions, and effectively become the new

target value. FSUIPC sustains this as a target for a maximum of

14 seconds, with the next write to the same location restarting

this timeout. After the timeout has been allowed to expire the

intended FS value will take over, with smoothing and so on if

enabled.

No Ok

2DF0 8 For FS2004 only, Visibility at the aircraft, in metres, as a 64-bit

double floating point – for writing, not reading.

This can be written to directly affect the visibility at the aircraft.

This value is set before FSUIPC performs any smoothing or

limiting actions, and effectively become the new target value.

FSUIPC sustains this as a target for a maximum of 14 seconds,

with the next write to the same location restarting this timeout.

After the timeout has been allowed to expire the intended FS

value will take over, with smoothing and so on if enabled.

Note that visibility set in this fashion is not reflected in any

weather data supplied by the weather system in FS nor FSUIPC.

It is acting locally to the aircraft and can be monitored by

Shift+Z or the ambient weather read-outs in FSUIPC.

No Ok

2E80 4 Master avionics switch (0=Off, 1=On) Ok Ok

2E88 4 Panel auto-feather arm switch (0=Off, 1=On) Ok Ok

2E98 8 Elevator deflection, in radians, as a double (FLOAT64). Up

positive, down negative.

Ok Ok

2EA0 8 Elevator trim deflection, in radians, as a double (FLOAT64). Up

positive, down negative.

Ok Ok

2EA8 8 Aileron deflection, in radians, as a double (FLOAT64). Right

turn positive, left turn negative.

Ok Ok

2EB0 8 Aileron trim deflection, in radians, as a double (FLOAT64).

Right turn positive, left turn negative.

Ok

2EB8 8 Rudder deflection, in radians, as a double (FLOAT64). Ok Ok

2EC0 8 Rudder trim deflection, in radians, as a double (FLOAT64). Ok

2EC8 4 Prop sync active (1=Active, 0=Inactive) Ok Ok

2ED0 8 Incidence ―alpha‖, in radians, as a double (FLOAT64). This is

the aircraft body angle of attack (AoA) not the wing AoA.

Ok Ok

2ED8 8 Incidence ―beta‖, in radians, as a double (FLOAT64). This is the

side slip angle.

Ok Ok

2EE0 4 Flight Director Active, control and indicator. 1=active, 0=inactive.

[FS2000–FS2004 only]

Ok Ok

2EE8 8 Flight director pitch value, in degrees. Double floating point format,

only when FD is active. [FS2000–FS2004 only]

Ok Ok

2EF0 8 Flight director bank value, in degrees. Double floating point format,

right is negative, left positive. [FS2000–FS2004 only]

Ok Ok

2EF8 8 CG percent, as a double (FLOAT64). This is the position of the

actual CoG as a fraction (%/100) of MAC

Ok Ok

2F70 8 Attitude indicator pitch value, in degrees. Double floating point format.

This is the ATTITUDE_INDICATOR _PITCH_DEGREES variable

previously listed as specific to FS2000. [FS2000/FS2002 only]

Ok Ok

2F78 8 Attitude indicator bank value, in degrees. Double floating point format.

This is the ATTITUDE_INDICATOR_BANK_DEGREES variable

previously listed as specific to FS2000. [FS2000/FS2002 only]

Ok Ok

2F80 1 PANEL AUTOBRAKE SWITCH

Read to check setting, write to change it.

0=RTO, 1=Off, 2=brake1, 3=brake2, 4=brake3, 5=max

Ok Ok

2F88 8 HSI CDI needle position, –127.0 to +127.0 double floating point. Full

range represents –10 to +10 degrees for a VOR, –2.5 to +2.5 degrees for

a LOC

Ok Ok

2F90 8 HSI GSI needle position, –119.0 to +119.0 double floating point. Full

range represents –0.7 to +0.7 degrees

Ok Ok

2F98 8 HSI speed, as a double floating point. I think it should be in metres/sec,

but it doesn‘t look right—feedback please!

Ok? Ok?

2FA0 8 HSI distance, as a double floating point. In metres. Ok Ok

2FA8 2 HSI bearing. In degrees? Doesn‘t seem to work. Feedback?

2FAA 1 HSI CDI valid flag. Doesn‘t appear to work?

2FAB 1 HSI GSI valid flag. Ok Ok

2FAC 1 HSI bearing valid flag. (Not seen this set yet – see 2FA8)

2FAD 1 HSI To/From flag: 0=off, 1=To, 2=From Ok Ok

2FAE 1 HSI ‗has localiser‘ flag Ok Ok

2FB0 6 HSI ident string Ok Ok

2FE0 32 Modules Menu, application item write area (see earlier in this

document)

Ok Ok

3000 6 VOR1 IDENTITY (string supplied: 6 bytes including zero terminator) Ok Ok

3006 25 VOR1 name (string supplied: 25 bytes including zero terminator) Ok Ok

301F 6 VOR2 IDENTITY (string supplied: 6 bytes including zero terminator) Ok Ok

3025 25 VOR2 name (string supplied: 25 bytes needed including zero

terminator)

Ok Ok

303E 6 ADF1 IDENTITY (string supplied: 6 bytes including zero terminator) Ok Ok

3044 25 ADF1 name (string supplied: 25 bytes including zero terminator) Ok Ok

3060 8 X (lateral, or left/right) acceleration in ft/sec/sec relative to the

body axes (see Note at end of table). This is in double floating

point format (FLOAT64). [FS2000 and later]

Ok

3068 8 Y (vertical, or up/down) acceleration in ft/sec/sec relative to the

body axes (see Note at end of table). This is in double floating

point format (FLOAT64). [FS2000 and later]

Ok

3070 8 Z (longitudinal, or forward/backward) acceleration in ft/sec/sec

relative to the body axes (see Note at end of table). This is in

double floating point format (FLOAT64). [FS2000 and later]

Ok Ok

3078 8 Pitch acceleration in radians/sec/sec relative to the body axes

(see Note at end of table). This is in double floating point format

(FLOAT64). [FS2000 and later]

Ok

3080 8 Roll acceleration in radians/sec/sec relative to the body axes (see

Note at end of table). This is in double floating point format

(FLOAT64). [FS2000 and later]

Ok

3088 8 Yaw acceleration in radians/sec/sec relative to the body axes (see

Note at end of table). This is in double floating point format

(FLOAT64). [FS2000 and later]

Ok

3090 8 Z (longitudinal, or forward/backward) GS-velocity in ft/sec

relative to the body axes (see Note at end of table). This is in

double floating point format (FLOAT64). [FS2000 and later]

Ok Ok

3098 8 X (lateral, or left/right) GS-velocity in ft/sec relative to the body

axes (see Note at end of table). This is in double floating point

format (FLOAT64). [FS2000 and later]

Ok

30A0 8 Y (vertical, or up/down) GS-velocity in ft/sec relative to the body

axes (see Note at end of table). This is in double floating point

format (FLOAT64). [FS2000 and later]

Ok

30A8 8 Pitch velocity in rads/sec relative to the body axes (see Note at Ok

end of table). This is in double floating point format

(FLOAT64). [FS2000 and later]

30B0 8 Roll velocity in rads/sec relative to the body axes (see Note at

end of table). This is in double floating point format

(FLOAT64). [FS2000 and later]

Ok

30B8 8 Yaw velocity in rads/sec relative to the body axes (see Note at

end of table). This is in double floating point format

(FLOAT64). [FS2000 and later]

Ok

30C0 8 Current loaded weight in lbs. This is in double floating point

format (FLOAT64). [FS2000 and later]

Ok

30C8 8 Plane‘s current mass, in slugs (1 slug = 1lb*G = 32.174049 lbs)

mass. This is in double floating point format (FLOAT64).

The current mass = current loaded weight (as in 30C0) * G,

where G is 32.174049.

Ok Ok

30D0 8 Vertical acceleration in G‘s. This is in double floating point

format (FLOAT64). [FS2k only]

No No

30D8 8 Dynamic pressure (lbs/sqft). [FS2k/CFS2/FS2002 only] Ok Ok

30E0 2 [FS2002/4 only]: Trailing edge left inboard flap extension as a

percentage of its maximum, with 16383 = 100%

Ok Ok

30E2 2 [FS2002/4 only]: Trailing edge left outboard flap extension as a

percentage of its maximum, with 16383 = 100%

Ok Ok

30E4 2 [FS2002/4 only]: Trailing edge right inboard flap extension as a

percentage of its maximum, with 16383 = 100%

Ok Ok

30E6 2 [FS2002/4 only]: Trailing edge right outboard flap extension as a

percentage of its maximum, with 16383 = 100%

Ok Ok

30E8 2 [FS2002/4 only]: Leading edge left inboard flap extension as a

percentage of its maximum, with 16383 = 100%

Ok Ok

30EA 2 [FS2002/4 only]: Leading edge left outboard flap extension as a

percentage of its maximum, with 16383 = 100%

Ok Ok

30EC 2 [FS2002/4 only]: Leading edge right inboard flap extension as a

percentage of its maximum, with 16383 = 100%

Ok Ok

30EE 2 [FS2002/4 only]: Leading edge right outboard flap extension as a

percentage of its maximum, with 16383 = 100%

Ok Ok

30F0 2 [FS2002/4 only]: Trailing edge left inboard flap extension in

degrees * 256.

Ok Ok

30F2 2 [FS2002/4 only]: Trailing edge left outboard flap extension in

degrees * 256.

Ok Ok

30F4 2 [FS2002/4 only]: Trailing edge right inboard flap extension in

degrees * 256.

Ok Ok

30F6 2 [FS2002/4 only]: Trailing edge right outboard flap extension in

degrees * 256.

Ok Ok

30F8 2 [FS2002/4 only]: Leading edge left inboard flap extension in

degrees * 256.

Ok Ok

30FA 2 [FS2002/4 only]: Leading edge left outboard flap extension in

degrees * 256.

Ok Ok

30FC 2 [FS2002/4 only]: Leading edge right inboard flap extension in

degrees * 256.

Ok Ok

30FE 2 [FS2002/4 only]: Leading edge right outboard flap extension in

degrees * 256.

Ok Ok

3100 1 Engine primer (just write a non-zero byte to operate the primer.

This is a one-shot and reading it is meaningless) [FS2000+]

Ok

3101 1 Alternator (1 = on, 0 = off), read for state, write to control

[FS2000+]

Ok

3102 1 Battery (1 = on, 0 = off), read for state, write to control

[FS2000+]

Ok Ok

3103 1 Avionics (1 = on, 0 = off), read for state, write to control

[FS2000+]

Ok Ok

3104 1 Fuel pump (1 = on, 0 = off), read for state, write to control Ok

[FS2000+]. For separate switches for separate fuel pumps see

offset 3125.

3105 1 VOR1 morse ID sound (1 = on, 0 = off), read for state, write to

control [FS2000+]

Ok

3106 1 VOR2 morse ID sound (1 = on, 0 = off), read for state, write to

control [FS2000+]

Ok

3107 1 ADF1 morse ID sound (1 = on, 0 = off), read for state, write to

control [FS2000+]

Ok

3108 1 Write 1 here to disable FSUIPC‘s ―AutoTune ADF1‖ facility, if

this has been enabled by the user in FSUIPC.INI.

Ok Ok

3109 1 This is a bit-oriented control flag byte. These bits are allocated

so far:

2^0 (1) = 1 to disable AxisCalibration even if enabled in

FSUIPC.INI. Note that this ―AxisCalibration‖ is the one

specifically concerned with direct offset values—see the

Advanced User‘s guide for the description of the INI parameter

for more details.

2^1 (2) = 1 to allow the older (FS98-compatible) axis controls to

remain connected even when the main axis controls are

disconnected via bits in 310A and 310B below. These are
AILERON_SET, ELEVATOR_SET, ELEVATOR_TRIM_SET,

RUDDER_SET, THROTTLE_SET and the four THROTTLEn_SET

controls. Allowing these through will let autopilot of FBW

programs control the relevant values without writing direct to the

appropriate offsets, but take care also that the THROTTLEn_SET

controls aren‘t being calibrated in the user‘s 4-throttle option

(page 3 in FSUIPC options).

2^7(128) is reserved for external applications to use as they wish.

In order to protect the user from a broken or crashed application,

the 2^1 flag is cleared 10 seconds after it has been set, so

applications will need to repeat the setting every few seconds.

Ok Ok

310A 1 Controls the joystick connection to the main flight controls.

Normally all zero, set the following bits to actually disconnect

the specific joystick axes (from least significant bit = 0):

0 Elevator

1 Aileron

2 Rudder

3 Throttles (all).

4 See below (throttle sync control)

5 Elevator trim

6 Throttle #1

7 Throttle #2 (see next byte for others)

This feature is intended for use in protecting autopilot flight from

interference from axis flutter. In order to protect the user from a

broken or crashed application, all the flags are cleared 10

seconds after they have been set, so applications will need to

repeat the setting every few seconds.

If the user option is set to automatically disconnect the trim axis

in FS A/P vertical modes, the disconnection of Elevator inputs

via bit 0 above also disconnects Trim even if bit 5 is not also set.

This allows existing A/P or fly-by-wire applications to work with

those user implementations using a trim axis.

Ok Ok

Additionally, bit 2^4 is available to switch ―throttle sync‖ on. In

this mode all throttles are driven from the main throttle or throttle

1 inputs, and other throttle inputs are discarded. (The same

option can also be used from an optional Hot Key).

See also offset 3109 above, and also offsets 3328–3339, which

provide the live axis values, post calibration. These would have

been applied to FS if not prevented by the flags above.

Applications can use these facilities to provide a responsive ―fly-

by-wire‖ control.

Note: additional axes are covered in 310B and 341B.

310B 1 Controls the joystick connection to the slewing controls, and the

other two separate throttle controls.

Normally all zero, set the following bits to actually disconnect

the specific axes (from least significant bit = 0):

0 Slew Ahead

1 Slew Side

2 Slew Heading

3 Slew Altitude

4 Slew Bank

5 Slew Pitch

6 Throttle #3 (see previous byte for #1, #2)

7 Throttle #4

In order to protect the user from a broken or crashed application,

all the flags are cleared 10 seconds after they have been set, so

applications will need to repeat the setting every few seconds.

See also offset 3109 above.

Ok Ok

310C 4 Reserved

3110 8 Operates a facility to send any ‗controls‘ to Flight simulator. This

works with all versions of FS & CFS. Write all 8 bytes for

controls which use a value (axes and all _SET controls), but just

4 will do for ‗button‘ types.

This is really two 32-bit integers. The first contains the Control

number (normally 65536 upwards), as seen in my FS Controls

lists. The second integer is used for the parameter, such as the

scaled axis value, where this is appropriate. Always write all 8

bytes in one IPC block if a parameter is used, as FSUIPC will

fire the control when you write to 3110.

Since version 3.40, FSUIPC-added controls (other than the offset

ones) can be used via these offsets too. See the Advanced User‘s

Guide for a current list.

Ok Ok

3118 2 COM2 frequency (FS2002+ only), 4 digits in BCD format. A

frequency of 123.45 is represented by 0x2345. The leading 1 is

assumed.

Ok Ok

311A 2 COM1 standby frequency (FS2002+ only), 4 digits in BCD

format. A frequency of 123.45 is represented by 0x2345. The

leading 1 is assumed.

Ok Ok

311C 2 COM2 standby frequency (FS2002+ only), 4 digits in BCD

format. A frequency of 123.45 is represented by 0x2345. The

leading 1 is assumed.

Ok Ok

311E 2 NAV1 standby frequency (FS2002+ only), 4 digits in BCD

format. A frequency of 113.45 is represented by 0x1345. The

leading 1 is assumed.

Ok Ok

3120 2 NAV2 standby frequency (FS2002+ only), 4 digits in BCD

format. A frequency of 113.45 is represented by 0x1345. The

Ok Ok

leading 1 is assumed.

3122 1 Radio audio switches (FS2002+ only). Read/write bit settings as

follows:

2^7 COM1 transmit

2^6 COM2 transmit

2^5 COM receive both

2^4 NAV1 sound

2^3 NAV2 sound

2^2 Marker sound

2^1 DME sound

2^0 ADF1 sound

For ADF2 sound, on FS2004, see offset 02FB.

Ok Ok

3123 1 Radio Use/Standby swap toggles (FS2002+ only), Write bits to

operate toggles. Don‘t bother to read it, there‘s no meaning to

anything read.

2^3 COM1 swap

2^2 COM2 swap

2^1 NAV1 swap

2^0 NAV2 swap

Ok Ok

3124 1 FS2002 only: ―electric always available‖ flag: set if 1, clear if 0.

Can be controlled by writing also.

Ok No

3125 1 FS2000/FS2002 only: separate switches for up to 4 Fuel Pumps

(one for each engine). Bit 2^0=Pump1, 2^1=Pump2,

2^2=Pump3, 2^4=Pump4. (see also offset 3104)

Ok

3126 1 Set view direction (write only, current view not detected).

 0 = FORWARD

 1–7 = FORWARD RIGHT and 45 degree views,

clockwise

 8 = DOWN

 9 = UP

 10-17 = FORWARD UP then 45 degree UP views,

clockwise

 all other values = RESET

Ok

3127 9 FSUIPC weather option control area: see text section earlier in

this document.

Ok Ok

3130 12 ATC flight number string for currently loaded user aircraft, as

declared in the AIRCRAFT.CFG file. This is limited to a

maximum of 12 characters, including a zero terminator.

[FS2002+ only]

Ok Ok

313C 12 ATC identifier (tail number) string for currently loaded user

aircraft, as declared in the AIRCRAFT.CFG file. This is limited

to a maximum of 12 characters, including a zero terminator.

[FS2002+ only]

Ok Ok

3148 24 ATC airline name string for currently loaded user aircraft, as

declared in the AIRCRAFT.CFG file. This is limited to a

maximum of 24 characters, including a zero terminator.

[FS2002+ only]

Ok Ok

3160 24 ATC aircraft type string for currently loaded user aircraft, as

declared in the AIRCRAFT.CFG file. This is limited to a

maximum of 24 characters, including a zero terminator.

[FS2002+ only]

Ok Ok

3178 8 Z (longitudinal, or forward/backward) TAS-velocity in ft/sec

relative to the body axes. This is in double floating point format

(FLOAT64). [[FS2002+ only]]

Ok

3180 8 X (lateral, or left/right) TAS-velocity in ft/sec relative to the

body axes (see Note at end of table). This is in double floating

point format (FLOAT64). [[FS2002+ only]]

Ok

3188 8 Y (vertical, or up/down) TAS-velocity in ft/sec relative to the

body axes (see Note at end of table). This is in double floating

Ok

point format (FLOAT64). [[FS2002+ only]]

3190 8 Z (longitudinal, or forward/backward) GS-velocity in ft/sec

relative to world axes (see Note at end of table). This is in double

floating point format (FLOAT64). [FS2000+]

Ok

3198 8 X (lateral, or left/right) GS-velocity in ft/sec relative to world

axes (see Note at end of table). This is in double floating point

format (FLOAT64). [FS2000+]

N.B. The sign may be reversed in FS2002?

Ok?

31A0 8 Y (vertical, or up/down) GS-velocity in ft/sec relative to world

axes (see Note at end of table). This is in double floating point

format (FLOAT64). [FS2000+]

Ok

31A8 8 Pitch velocity in rads/sec relative to world axes (see Note at end

of table). This is in double floating point format (FLOAT64).

[FS2000+]

Ok

31B0 8 Roll velocity in rads/sec relative to world axes (see Note at end

of table). This is in double floating point format (FLOAT64).

[FS2000+] N.B. In FS2002 the sign may be reversed, and the

units may be 16x

Ok?

31B8 8 Yaw velocity in rads/sec relative to world axes (see Note at end

of table). This is in double floating point format (FLOAT64).

[FS2000+] N.B. In FS2002 the sign may be reversed, and the

units may be 16x

Ok?

31C0 8 X (lateral, or left/right) acceleration in ft/sec/sec relative to the

world axes (see Note at end of table). This is in double floating

point format (FLOAT64). [FS2002+]

Ok

31C8 8 Y (vertical, or up/down) acceleration in ft/sec/sec relative to the

world axes (see Note at end of table). This is in double floating

point format (FLOAT64). [FS2002+]

Ok

31D0 8 Z (longitudinal, or forward/backward) acceleration in ft/sec/sec

relative to the world axes (see Note at end of table). This is in

double floating point format (FLOAT64). [FS2002+]

Ok

31D8 2 Slew mode longitudinal axis (i.e. forward/backward) input value,

post calibration, just before being applied to the simulation (if

allowed to by the byte at offset 310B)

Ok Ok

31DA 2 Slew mode lateral axis (i.e. left/right) input value, post

calibration, just before being applied to the simulation (if

allowed to by the byte at offset 310B)

Ok Ok

31DC 2 Slew mode yaw axis (i.e. heading) input value, post calibration,

just before being applied to the simulation (if allowed to by the

byte at offset 310B)

Ok Ok

31DE 2 Slew mode vertical axis (i.e. altitude) input value, post

calibration, just before being applied to the simulation (if

allowed to by the byte at offset 310B)

Ok Ok

31E0 2 Slew mode roll axis (i.e. bank) input value, post calibration, just

before being applied to the simulation (if allowed to by the byte

at offset 310B)

Ok Ok

31E2 2 Slew mode pitch axis input value, post calibration, just before

being applied to the simulation (if allowed to by the byte at offset

310B)

Ok Ok

31E4 4 Radio altitude in metres * 65536

(Calculated by FSUIPC from ground altitude and aircraft

altitude)

Ok Ok

31E8 4 Surface type as a 32-bit integer (FS2002+ only). I think this only

applies when the aircraft is on the ground. The values probably

correspond to the surface encoding in the scenery files, thus:
 CONCRETE 0

 GRASS 1 SOFT, BUMPY GROUND (LANDABLE)

 WATER 2

 GRASS BUMPY 3 VERY BUMPY GRASS & MUD (CRASHABLE)

 ASPHALT 4

Ok Ok

 SHORT GRASS 5

 LONG GRASS 6

 HARD TURF 7

 SNOW 8

 ICE 9

 URBAN 10

 FOREST 11

 DIRT 12

 CORAL 13

 GRAVEL 14

 OIL TREATED 15 TAR & CHIP

 STEEL MATS 16 STEEL MESH TEMPORARY RUNWAYS

 BITUMINUS 17

 BRICK 18

 MACADAM 19

 PLANKS 20

 SAND 21

 SHALE 22

 TARMAC 23

 UNKNOWN 254

31EC 4 Surface condition as a 32-bit integer (FS2002+ only), probably

as follows:
 NORMAL 0

 WET 1

 ICY 2

 SNOW 3 SNOW ON A NON-SNOW SURFACE

Ok Ok

31F0 4 Pushback status (FS2002+).

3=off, 0=pushing back, 1=pushing back, tail to swing to left

(port), 2=pushing back, tail to swing to right (starboard)

Ok Ok

31F4 4 Pushback control (FS2002+). Write 0–3 here to set pushback

operation, as described for the status, above.

Ok Ok

31F8 4 Tug Heading control, for gliders I assume (FS2002+ only).

[write only]. The units appear to be the same as the aircraft

heading usits (see offset 0580).

Ok? Ok?

31FC 4 Tug Speed control, for gliders I assume (FS2002+ only). [write-

only]. Units not confirmed, but possible ft/sec.

Ok? Ok?

3200 12 These locations operate the FSUIPC facility to send keystrokes

to FS. For this to operate correctly the PC must be using

Windows 98, ME or 2000. The facilities used just do not exist in

Windows 95 nor NT.

3200 message (WM_KEYDOWN or WM_KEYUP)

3204 wParam for the message

3208 lParam for the message

All 12 bytes must be written in one IPC write. (This feature is

used in WideClient version 3.998 and later, when the [User]

parameter "SendKeyPresses=Yes" is included in its .ini file, to

relay all non-system (i.e. no Alt key) key presses it receives to

the WideServer host).

Ok Ok

320C 4 Number of Hot Key slots available for Application Programs to

use. Currently this is fixed at 56, representing the 56 DWORDs

available in the following offsets:

Ok Ok

3210 224 56 DWORDs containing zero (when free for use), or a Hot Key

specification as detailed earlier in this document. See also 32FE

below.

Ok Ok

32F0 4 This DWORD controls some protected mode facilities in

FSUIPC, designed to set known conditions in FSUIPC and

prevent access to specific menus, whilst an application is

running.

The whole 32 bit DWORD should be written at once, but the use

is divided into Bytes, as follows:

 Bits 0–7 (byte at 32F0): FSUIPC option settings

 2^0 Sets FSUIPC ―normal defaults‖

Ok Ok

 2^1 Sets FSUIPC ―minimum weather defaults‖

 any non-zero value in this byte stops entry to FSUIPC

options

 Bits 8–15 (byte at 32F1): Flight Sim menu restrictions

 2^10 Disable World menu

 2^11 Disable Aircraft menu

 2^12 Disable Flights menu

 2^13 Disable Options menu

 2^14 Disable Flights, Aircraft and World menus

 2^15 Disable ALL Menus

 Bits 16–23 (byte at 32F2): reserved

 Bits 24–31 (byte at 32F3): Timeout (in ticks or 55 mSecs

units)

The application must write this DWORD regularly for the

restrictions to stay in place. The count in the high byte is

decremented by 1 every 55 mSecs, so a maximum time of 14

seconds can be set. To be safe the application should be re-

writing this with a count of FF (255) every 5 or so seconds,

especially if it is likely to be running across WideFS.

When the count expires, or the application whites a zero

DWORD here, all the options and menus return to normal.

32F4 2 The 16-bit ID of the last menu command item accessed in FS can

be read here. By ―access‖ is not meant ―used‖–that cannot be

determined easily. Just having a menu command highlit will

denote an access.

To decode command Ids, use FSUIPC logging. First, before

running FSUIPC set ―Debug=Please‖ and ―LogExtras=64‖ into

the FSUIPC.INI file. Then run FS and select the menu items in

which you are interested. Examine the FSUIPC Log afterwards

to determine the ID.

Ok

32F6 2 FSUIPC selected technical option inhibits.

Set bits here to turn off specific options and prevent the user

turning them back on, for a limited time (max 14 seconds). To

keep options turned off you need to write this mask at regular

intervals (e.g. every 5 seconds).

Note that this is not obeyed if the user has selected to option to

disallow all external control of his options. If he has done this,

you can detect it by reading this location back within the time

limit. If it is zero, not the value written, then the user is

preventing your control over his settings.

Bits allocated so far are as follows (bit 0 = 2^0 bit):

0 Reverse elevator trim sense

1 Fix control accelerations

2 Rudder spike elimination

3 Elevator spike elimination

4 Aileron spike elimination

5 Autopilot altitude fix (enable V/S sign corrn.)

6 Extend battery life

7 FS clock seconds sync

Ok Ok

32F8 1 This provides options to inhibit certain aircraft operations, for

use in breakdown or precise control implementations. Set

individual bits for individual subsystems. Currently the following

are available, all related to hydraulic power:

2^0 Set to inhibit flap operation

2^1 Set to inhibit spoiler operation

2^2 Set to inhibit gear operation

Yes Yes

2^3 reserved

2^4 Set to inhibit Engine #1 reverser

2^5 Set to inhibit Engine #2 reverser

2^6 Set to inhibit Engine #3 reverser

2^7 Set to inhibit Engine #4 reverser

Note that these stop operation from axis and button controls very

well, and also from key presses and mouse clicks—but in these

latter two cases it is done by detecting a change in the system and

changing it back. This works, but the device will sometimes try

to move, and this can be noticeable, especially for some reason

with the flaps—the indicator gives a little jump and the noise

briefly starts. [FS2002 and later only]

32F9 1 Brakes being used flag. This is non-zero if the user has pressed

the brakes (left, right or both) recently. It stays non-zero for a

second after the last brake control or significant axis increase

seen. It does not stay set for continued constant brake pressure

via the axis inputs. It operates also for increasing values written

to offset 0C00 or 0C01.

Note: this is only fully implemented for FS2004+. It will work

for buttons and axes in earlier versions, but not keyboard

braking.

Yes, but Yes

32FA 2 Text display control word. You can display messages from an

external program just like an Adventure. Write the message as a

zero-terminated string to offset 3380 (see below), subject to the

maximum of 128 characters including the zero terminator, then

write a number to this offset, 32FA, as follows:

 0 display till replaced

 +n display for n seconds, or until replaced

 –1 display and scroll, or until replaced

–n display and scroll, or for n seconds, or until

replaced

In the last two cases, whether the message scrolls or not depends

upon the setting of the ―Options—Settings—General—Text

Display‖ option. The time limit only applies when scrolling is

off, otherwise the message simply expires when fully scrolled off

the screen.

See also offset 1274 above, and the ―white messages‖ option in

3302 below.

Ok Ok

32FC 2 AIR file change counter (incremented by FSUIPC whenever the

AIR file as defined at offset 3C00 changes).

This is also incremented when the FS2004 control to ―reload user

aircraft‖ is detected—assign it to a joystick button or to a Key in

FSUIPC for this. FSUIPC cannot detect controls arising from

key presses assigned in FS dialogues.

Ok Ok

32FE 1 Hot Key change counter, incremented by FSUIPC whenever any

of the Hot Keys defined in the table at offset 3210 occurs and

therefore has its flag set by FSUIPC.

Ok Ok

32FF 1 Hot Button change counter, incremented by FSUIPC whenever

any of the Hot Buttons defined in the table at offset 2910

changes state in the right way, and therefore has its flag set by

FSUIPC.

Ok Ok

3300 2 [FS2k, CFS2 and FS98, as applicable]

Additional radio and autopilot status indicators (read only

access). Allocation by bits which are set when true. Bit 0 = least

Ok Ok

significant (value 1):

0 = reserved

1 = good NAV1

2 = good NAV2

3 = good ADF1

4 = NAV1 has DME

5 = NAV2 has DME

6 = NAV1 is ILS

7 = AP NAV1 radial acquired

8 = AP ILS LOC acquired (incl BC—see 10)

9 = AP ILS GS acquired

10=AP ILS LOC is BC

11=good ADF2 (FS2004)

12=NAV2 is ILS

13–15 reserved

3302 2 Assorted FSUIPC options, set by user parameters: read-only via

the IPC. Those allocated so far (bits from least significant):

 0 = Static (i.e. non-scrolling) messages sent to FS are to be

displayed in white rather than the default red. (If

AdvDisplay is installed it must be version 2.11 or later

for this option).

 1 = This is FS2004 (or later) but MakeItVersionFS2002

has been used in the INI to ―fiddle‖ the reported value

in 3308 to show FS2002.

Ok Ok

3304 4 FSUIPC version number:

The HIWORD (i.e. bytes 3306-7) gives the main version as BCD

x 1000: e.g. 0x1998 for 1.998

The LOWORD (bytes 3304-5) gives the Interim build letter:

0=none, 1-26=a-z: e.g. 0x0005 = 'e'

Ok Ok

3308 2 FS version, as determined by FSUIPC: Currently only one of

these:

 1 = FS98

 2 = FS2000

 3 = CFS2

 4 = CFS1

 5 = reserved

 6 = FS2002

 7 = FS2004 ―A Century of Flight‖

 8 = FSX

 9 = ESP

 10=P3D

(see also bit 1 in offset 3302 above)

Ok Ok

330A 2 Fixed read-only pattern, set to 0xFADE. Use this to check that

the values in 3304-3308 are valid (Note: the supplied LIB writes

its version number here, but this has no effect and is only for

assistance when viewing LOG files).

Ok Ok

330C 2 Assorted status flags, the only ones which are of use to

applications being:

2^1 When set this indicates that programs have full access to

the IPC not. This can be read without triggering the

message box to users which tells them of an unaccredited

access attempt. Note that on WideClient it will always be

set, assuming WideServer is registered on the FS PC.

2^2 Set if the user has fully registered FSUIPC

2^3 Set when FS is closing (EXIT event seen). This applies to

FS2004 only, and isn‘t actually likely to be readable in

time by applications.

Variable,

see text

Ok

2^4 Set when the user Throttle Sync option (in the Hot Keys

page of FSUIPC options) is enabled.

330E 1 Count of external IPC applications seen connecting since the

session began. Keeps increasing till it gets to 255 then stays at

that value.

Ok Ok

330F 17 Reserved area for WideFS KeySend facility (version 4.23 and

later)

Ok Ok

3320 2 This word is used to activate a facility supported by WideFS to

automatically shut down the PCs running WideServer (i.e. this

one) and WideClient. The .ini files of each WideFS component

which is to activate the shutdown needs the

―AllowShutdown=Yes‖ parameter included. The application

performing the shut down action must write 0xABCD to this

offset.

WideServer automatically resets this word to zero 5 seconds

afterwards, before it initiates its own PC‘s shutdown if specified.

This delay is to ensure the Clients get the message before the

host dies, and the clearing to zero is done so that the survivors

can continue.

Since version 5.30, WideFS also provides the lesser option

―AllowShutdown=App‖ which only closes down the WideClient

or, in the case of WideServer, the FS session. Later still the

―AppOnly‖ variation was added, which keeps WideClient

running, ready to reload the applications when FS restarts.

A hot key facility to invoke this WideFS shutdown from the FS

keyboard is added in version 5.301 of WideServer.

Since version 6.40 of WideFS the pattern 0xDCBA written here

invokes a ―close application‖ action. On all WideFS PCs with

any form of shutdown allowed, this pattern closes only those

applications loaded by WideFS and leaves WideClient running

ready to reload them. On the Server, if it is allowed, it closes FS

itself. A hot key facility is provided for this variant, too.

Ok Ok

3322 2 WideServer version number, if running and if version 5.00 or

later. Otherwise this is zero.

This is a BCD value giving the version number x 1000, for

example 0x5110 means version 5.110.

See also offset 333C.

Ok Ok

3324 4 This is the altimeter reading in feet (or metres, if the user is

running with the preference for altitudes in metres), as a 32-bit

signed integer. Please check offset 0C18 to determine when

metres are used (0C18 contains ‗2‘).

The same value can be calculated from the actual altitude and the

difference between the QNH and the altimeter ―Kollsman‖

pressure setting, but this value ensures agreement.

Ok Ok

3328 2 Elevator Axis input value, post calibration, just before being

applied to the simulation (if allowed to by the byte at offset

310A).

Ok Ok

332A 2 Aileron Axis input value, post calibration, just before being

applied to the simulation (if allowed to by the byte at offset

310A).

Ok Ok

332C 2 Rudder Axis input value, post calibration, just before being

applied to the simulation (if allowed to by the byte at offset

Ok Ok

310A).

332E 2 Throttle Axis input value, post calibration, just before being

applied to the simulation (if allowed to by the byte at offset

310A). This is the single throttle, applied to whichever engines

are denoted by the bits in offset 0888.

Ok Ok

3330 2 Throttle 1 Axis input value, post calibration, just before being

applied to the simulation (if allowed to by the byte at offset

310A).

Ok Ok

3332 2 Throttle 2 Axis input value, post calibration, just before being

applied to the simulation (if allowed to by the byte at offset

310A).

Ok Ok

3334 2 Throttle 3 Axis input value, post calibration, just before being

applied to the simulation (if allowed to by the byte at offset

310A).

Ok Ok

3336 2 Throttle 4 Axis input value, post calibration, just before being

applied to the simulation (if allowed to by the byte at offset

310A).

Ok Ok

3338 2 Elevator Trim Axis input value, post calibration, just before

being applied to the simulation (if allowed to by the byte at offset

310A).

Ok Ok

333A 2 Throttle lower limit (FS2002 and later only). This is normally 0

if no reverse is available, otherwise gives the reverse limit such

as –4096 (for 25%). For earlier versions than FS2002 this

location will be zero.

Ok Ok

333C 2 WideFS flags: only set from version 5.50 or later of WideFS.

Flags used so far are:

 2^0 1 =if TCP is being used, 0 if SPX

 2^1 1 if connected at all, 0 is waiting for

connections

See offset 3322 for WideFS version number, which also confirms

that WideServer is installed and running.

Ok Ok

333E 2 Weather clear count: This is incremented every time FS‘s ―clear

weather‖ routine is called, for whatever reason.

Ok Ok

3340 36 This area is used for externally signalled ―joystick button‖

control a set of 288 "virtual buttons". Each DWORD or 32 bits

represents one ―joystick‖ with 32 buttons. If an external program

sets or clears a bit in any of these 9 DWORDS the ―Buttons‖

page in FSUIPC will register the change as a button operation on

one of Joystick numbers 64 to 73 (corresponding to the 9

DWORDs). So, FSUIPC can be used to program whatever

actions the user wants.

See also offset 29F0.

Ok Ok

3364 1 FS2004 ―Ready to Fly‖ indicator. This is non-zero when FS is

loading, or reloading a flight or aircraft or scenery, and becomes

zero when flight mode is enabled (even if the simulator is paused

or in Slew mode).

No Ok

3365 1 ―In Menu or Dialog‖ flag. This byte is non-zero when FS is

effectively paused because the user accessed the Menu, or is in a

dialogue resulting from menu or other selection activity.

The non-zero values are:

 1 = FS frozen because of menu activity

 2 = FS frozen because of modal dialogue

Both bits may be set in dialogues accessed through the menu.

Note that the 2 bit may flicker a little on exit from the dialogue,

due to the way it is detected.

In FS2004 the byte at 3364 should also be considered when

Ok Ok

using this flag—there are some conditions, like reloading scenery

or aircraft or flights, which effectively freeze the sim in ways not

detectable except by the method used for the ―ready to fly‖

indicator.

3366 1 This byte reflects the FS2004 ―Engine on Fire‖ flags. I‘m not

sure if FS actually simulates such events, but it appears to have

allocated Gauge-accessible variables to indicate them. This byte

uses bits 2^0–2^3 as flags for fires in Engines 1 to 4,

respectively.

No Ok

3367 1 This byte shows doors that are open (FS2004 only). At present

this only provides bit 2^0 for the main doors.

No Ok

3368 4 Reserved for PFC.DLL events.

336C 2 Frame rate calling counter. This is simply a number that is

incremented each time FSUIPC is entered from FS using the

entry related to frame rates.

Ok Ok

336E 2 Toe brake axes have been selected as ―Set‖ in FSUIPC‘s joystick

pages if this is non-zero. Byte 336E is non-zero for Left Brake,

byte 336F for Right Brake.

Note that this only means that the user has told FSUIPC to

handle the toe braking, by pressing ―Set‖. It will only actually do

so if it sees brake messages.

Ok Ok

3370 4 Four single byte PFC driver ―alive‖ counters:

 3370 = COM port read thread alive and running

 3371 = Elevator trim motor action (0=off, 1=up, 2=dn)

 3372 = COM port write thread alive

 3373 = Main FS chain alive

N.B. without the main FS chain running the other three aren‘t

maintained in any case, so mean nothing.

Ok Ok

3374 4 This is the ―live‖ millisecond count as used in the FSUIPC Log.

It is updated on each FS chained call to FSUIPC.

Ok Ok

3378 4 This is the millisecond timestamp value of the most recent line in

the current FSUIPC Log. It is updated when each line is logged.

Ok Ok

337C 1 Propeller de-ice switch, (1 = on, 0 = off), read for state, write to

control [FS2002+]. This should operate with aircraft defined to

have the facility, but in fact it merely reflects the older Anti-Ice

switch. The TOGGLE_PROP_DEICE control does nothing.

337D 1 Structural de-ice switch, (1 = on, 0 = off), read for state, write to

control [FS2002+]. Although this is documented in both FS2002

and FS2004 panel SDKs, with a token value and an FS control,

it appears to do nothing. Possibly it needs some action in the

AIR file or Aircraft.CFG, but there‟s nothing in the official

documentation.

337E 2 FSUIPC activity count. Simply a number that is incremented

every time FSUIPC receives a call or message from Flight

Simulator. This can be used through WideFS to check if FS is

still active, for example. Note that when FS is loading aircraft or

scenery/textures, this value may not change for many seconds as

FSUIPC is then not getting any processor time at all.

Ok Ok

3380 128 Message text area, where AdvDisplay.dll (if running) stores a

copy of the ADVenture text display. This can be useful for

programs wishing to display the adventure texts on a separate

PC, via WideFS (the freeware ShowText.exe is an example).

The text is truncated if longer than 127 characters, there always

being a zero terminator provided.

You can also write messages to this area, always zero terminated,

for display on the FS windshield or via AdvDisplay if it is

running. After placing the message text, you must write the 16-

Ok Ok

bit timer value to offset 32FA to make FSUIPC send the message

through to FS (see 32FA above).

3400 2 FSUIPC logging options, reading and setting, bit-oriented with

bits used as follows (bit numbers from bit 0 = least significant):
0 = logging enabled (ignored, as logging is always enabled nowadays)

1 = weather

2 = IPC writes

3 = IPC reads

4 = Extras

5 = Extended, technical button and key logging

6 = VRI comms

7 = com HID

8 = L:Vars

9 = Axes

10 = Events

11 = Button/key standard logging

12 = Lua logging separate

Ok Ok

3410 2 Assorted indicator flags. These are the only ones currently set

(bit numbers, bit 0 = 2^0):

4 Engine 1 Reverser is set but inhibited*

5 Engine 2 Reverser is set but inhibited*

6 Engine 3 Reverser is set but inhibited*

7 Engine 4 Reverser is set but inhibited*

* Reverser inhibits are set in offset 32F8. Note that these flags

will be cleared only when the inhibit is removed or the relevant

throttle input goes positive (i.e. not just to idle).

Ok Ok

3412 2 Spoiler Axis input value, post calibration, just before being

applied to the simulation (if allowed to by the byte at offset

341A). Copy this to 0BD0 for normal spoiler action.

Ok Ok

3414 2 Flaps Axis input value, post calibration, just before being applied

to the simulation (if allowed to by the byte at offset 341A). Copy

this to 0BDC for normal flaps action.

Ok Ok

3416 2 Left Brake Axis input value, post calibration, just before being

applied to the simulation (if allowed to by the byte at offset

341A). Copy this to 0BC4 for normal left brake action.

Ok Ok

3418 2 Right Brake Axis input value, post calibration, just before being

applied to the simulation (if allowed to by the byte at offset

341A). Copy this to 0BC6 for normal right brake action.

Ok Ok

341A 1 Controls the joystick connection for ancillary axis controls,

currently Left and Right brake, flaps and spoiler axes. Normally

all zero, set the following bits to actually disconnect the specific

joystick axes (from least significant bit = 0):

0 Left brake (―Axis Left Brake Set‖)

1 Right Brake (―Axis Right Brake Set‖)

2 Flaps

3 Spoilers

This feature is intended for use in simulating relevant subsystem

failures or partial failures. Programs can read the input axis

values from offsets 3412–3418 above, and apply them, after

appropriate modification, to the relevant FS axis offsets (at 0BC4

and 0BC6 for Brakes, 0BDC for Flaps or 0BD0 for Spoiler.

In order to protect the user from a broken or crashed application,

the flags are cleared 10 seconds after they have been set, so

applications will need to repeat the setting every few seconds.

Note that this byte is effectively ―write only‖. Upon reading it

will always appear to contain zero.

Ok Ok

3470 8 Ambient wind X component, double float (FS2002+), m/sec Ok Ok

3478 8 Ambient wind Y component, double float (FS2002+)., m/sec Ok Ok (with

In FS2004 (only), values written here are sustained by FSUIPC

for up to 14 seconds, or until another value is written. This can

be used by applications to provide things like lift for glider

soaring, or fast variations to emulate vertical turbulence. The

values written here are not subject to FSUIPC‘s smoothing, and

won‘t be reflected in any normal weather read-outs like ATIS.

extra

facilities)

3480 8 Ambient wind Z component, double float (FS2002+), m/sec Ok Ok

3488 8 Ambient wind velocity, double float (FS2002+), m/sec Ok Ok

3490 8 Ambient wind direction, double float (FS2002+), True Ok Ok

3498 8 Ambient pressure, double float (FS2002+). This is accurate in

FS2004, but suspicious in FS2002.

See text Ok

34A0 8 Sea level pressure (QNH), double float (FS2002+) Ok Ok

34A8 8 Ambient temperature, double float (FS2002+) Ok

34B0 8 Pressure Altitude (metres), double float. This is the indicated

altitude when the altimeter Kollsman setting is 1013.2 hPa

(29.92‖).

Ok Ok

34B8 8 Standard ATM Temperature, degrees Rankine, double float. This

is the expected temperature at the actual AMSL in the

International Standard Atmosphere model.

Ok Ok

34C8 8 Total velocity, ft/sec, double float. This is the resultant velocity

of the three X,Y,Z orthogonal velocities given in offsets 3178,

3180 and 3188.

No Ok

3500 24 ATC aircraft model string for currently loaded user aircraft, as

declared in the AIRCRAFT.CFG file. This is limited to a

maximum of 24 characters, including a zero terminator.

[FS2002+ only]

Ok Ok

3518 8 This double provides the FS-set "Ambient Wind Y" value within

about one second of offset 3478 being written by an application,

to control up and down drafts. This allows such a program to

monitor FS/scenery arranged updrafts and adjust its actions

accordingly. [FS2004 only]

No Ok

3520 2 Earliest version number of connected WideClients (or clients

which have been connected). Zero if no connections have been

made, or if all connected clients have been version 6.441 or

before.

Ok Ok

3541 1 This operates the FSUIPC ―freeze flight position‖ facility. This

keeps the aircraft at the same latitude and longitude for as long as

it is engaged. The altitude and attitude of the aircraft is free to

change, and, in fact, the aircraft flies as normal except for not

changing its position over the ground. This is apparently a very

useful facility for training environments.

For program control, write a non-zero values to this one byte

offset. This acts as a timer. The freeze will last for as long as this

byte is non-zero. It is used as a time, counting down 1 every

timer tick of 55 mSecs or so. To retain the freeze for a good time,

write 255 here and do so every 5–10 seconds. Allow for WideFS

delays.

Note that if FS is paused, then the freeze lasts until the pause is

released and re-engaged.

Ok, but

not

smooth,

and FS

jumps to

“real”

position

when

released

Ok, works

well.

3542 2 Standby altimeter pressure setting (―Kollsman‖ window). As

millibars (hectoPascals) * 16. [This is used by FSUIPC to

maintain offset 3544. It is not used by FS at all]

Ok Ok

3544 4 This is the standby altimeter reading in feet (or metres, if the user

is running with the preference for altitudes in metres), as a 32-bit

signed integer. Please check offset 0C18 to determine when

metres are used (0C18 contains ‗2‘).

Ok Ok

This value is maintained by FSUIPC using the pressure setting

supplied in offset 3542. It isn‘t used in FS itself, but is supplied

for additional gauges and external altimeters so that the standby

can be kept at the correct (or last notified) QNH whilst the main

altimeter is used for Standard settings (for airliners flying Flight

Levels).

3548 8 Horizon bars offset, as a percentage of maximum, in floating

point double format. (–100.0 down to +100.0 up). On the default

Cessnas the maximum offset is 10 degrees. [Read only on

FS2004]

Ok Ok

3550 56 Reserved for FSUIPC diagnostics related to Gauge Mousing

3590 4 Engine 1 Fuel Valve, 1 = open, 0 = closed. Can write to operate.

[FS2002+]

 Ok

3594 4 Engine 2 Fuel Valve, 1 = open, 0 = closed. Can write to operate.

[FS2002+]

 Ok

3598 4 Engine 3 Fuel Valve, 1 = open, 0 = closed. Can write to operate.

[FS2002+]

 Ok

359C 4 Engine 4 Fuel Valve, 1 = open, 0 = closed. Can write to operate.

[FS2002+]

 Ok

35A0 8 Airspeed Mach value, double float (FS2002+) Ok Ok

35A8 8 Reciprocating engine 4 manifold pressure, in lbs/sqft, as a double

(FLOAT64). Divide by 70.7262 for inches Hg.

Ok Ok

35B0 8 Engine 4 cowl flap position, as a double float: 0.0=fully closed,

1.0=fully open. Can be used to handle position and set it. .

[FS2000–FS2004 only]

Ok Ok

35D0 4 Reciprocating engine 4, left magneto select (1 = on, 0 = off) Ok Ok

35D4 4 Reciprocating engine 4, right magneto select (1 = on, 0 = off) Ok Ok

35D8 8 Reciprocating engine 4 fuel/air mass ratio, as a double

(FLOAT64).

Ok Ok

35E0 8 Reciprocating engine 4 brake power in ft-lbs, as a double

(FLOAT64). Divide by 550 for HP.

Ok Ok

35E8 8 Reciprocating engine 4 carburettor temperature, in degrees

Rankine, as a double (FLOAT64).

Ok Ok

35FC 4 Reciprocating engine 4 emergency boost active flag (32-bit

BOOLEAN). On some aircraft this controls whether the

supercharger is active or not.

Ok Ok

3600 8 Reciprocating engine 4 emergency boost elapsed time in

seconds, as a double (FLOAT64). This counts how long the

boost has been engaged, when it is made active by an FS control.

FS turns it off when reaching 312. You can keep it going by

occasionally writing 0 here.

Ok Ok

3608 8 Reciprocating engine 4 wastegate position (read-only,

effectively)

Ok Ok

3628 8 Reciprocating engine 4 fuel pressure (double or FLOAT64) Ok Ok

3640 4 Reciprocating engine 4 tank selector, using the same numbers as

0AF8.

Ok Ok

3648 4 Reciprocating engine 4, number of fuel tanks supplying fuel. Ok Ok

3654 4 Reciprocating engine 4 fuel available flag (0 or 1). Ok Ok

3668 8 Reciprocating engine 3 manifold pressure, in lbs/sqft, as a double

(FLOAT64). Divide by 70.7262 for inches Hg.

Ok Ok

3670 8 Engine 3 cowl flap position, as a double float: 0.0=fully closed,

1.0=fully open. Can be used to handle position and set it.

[FS2000–FS2004 only]

Ok Ok

3690 4 Reciprocating engine 3, left magneto select (1 = on, 0 = off) Ok Ok

3694 4 Reciprocating engine 3, right magneto select (1 = on, 0 = off) Ok Ok

3698 8 Reciprocating engine 3 fuel/air mass ratio, as a double

(FLOAT64).

Ok Ok

36A0 8 Reciprocating engine 3 brake power in ft-lbs, as a double Ok Ok

(FLOAT64). Divide by 550 for HP.

36A8 8 Reciprocating engine 3 carburettor temperature, in degrees

Rankine, as a double (FLOAT64). [FSUIPC version 3.401 or

later]

Ok Ok

36BC 4 Reciprocating engine 3 emergency boost active flag (32-bit

BOOLEAN). On some aircraft this controls whether the

supercharger is active or not.

Ok Ok

36C0 8 Reciprocating engine 3 emergency boost elapsed time in

seconds, as a double (FLOAT64). This counts how long the

boost has been engaged, when it is made active by an FS control.

FS turns it off when reaching 312. You can keep it going by

occasionally writing 0 here.

Ok Ok

36C8 8 Reciprocating engine 3 wastegate position (read-only,

effectively)

Ok Ok

36E8 8 Reciprocating engine 3 fuel pressure (double or FLOAT64) Ok Ok

3700 4 Reciprocating engine 3 tank selector, using the same numbers as

0AF8.

Ok Ok

3708 4 Reciprocating engine 3, number of fuel tanks supplying fuel. Ok Ok

3714 4 Reciprocating engine 3, fuel available flag (0 or 1). Ok Ok

3728 8 Reciprocating engine 2 manifold pressure, in lbs/sqft, as a double

(FLOAT64). Divide by 70.7262 for inches Hg.

Ok Ok

3730 8 Engine 2 cowl flap position, as a double float: 0.0=fully closed,

1.0=fully open. Can be used to handle position and set it. .

[FS2000–FS2004 only]

Ok Ok

3750 4 Reciprocating engine 2, left magneto select (1 = on, 0 = off) Ok Ok

3754 4 Reciprocating engine 2, right magneto select (1 = on, 0 = off) Ok Ok

3758 8 Reciprocating engine 2 fuel/air mass ratio, as a double

(FLOAT64).

Ok Ok

3760 8 Reciprocating engine 2 brake power in ft-lbs, as a double

(FLOAT64). Divide by 550 for HP.

Ok Ok

3768 8 Reciprocating engine 2 carburettor temperature, in degrees

Rankine, as a double (FLOAT64). [FSUIPC version 3.401 or

later]

Ok Ok

377C 4 Reciprocating engine 2 emergency boost active flag (32-bit

BOOLEAN). On some aircraft this controls whether the

supercharger is active or not.

Ok Ok

3780 8 Reciprocating engine 2 emergency boost elapsed time in

seconds, as a double (FLOAT64). This counts how long the

boost has been engaged, when it is made active by an FS control.

FS turns it off when reaching 312. You can keep it going by

occasionally writing 0 here.

Ok Ok

3788 8 Reciprocating engine 2 wastegate position (read-only,

effectively)

Ok Ok

37A8 8 Reciprocating engine 2 fuel pressure (double or FLOAT64) Ok Ok

37C0 4 Reciprocating engine 2 tank selector, using the same numbers as

0AF8.

Ok Ok

37C8 4 Reciprocating engine 2, number of fuel tanks supplying fuel. Ok Ok

37D4 4 Reciprocating engine 2, fuel available flag (0 or 1). Ok Ok

37E8 8 Reciprocating engine 1 manifold pressure, in lbs/sqft, as a double

(FLOAT64). Divide by 70.7262 for inches Hg.

Ok Ok

37F0 8 Engine 1 cowl flap position, as a double float: 0.0=fully closed,

1.0=fully open. Can be used to handle position and set it.

[FS2000–FS2004 only]

Ok Ok

3810 4 Reciprocating engine 1, left magneto select (1 = on, 0 = off) Ok Ok

3814 4 Reciprocating engine 1, right magneto select (1 = on, 0 = off) Ok Ok

3818 8 Reciprocating engine 1 fuel/air mass ratio, as a double

(FLOAT64).

Ok Ok

3820 8 Reciprocating engine 1 brake power in ft-lbs, as a double

(FLOAT64). Divide by 550 for HP.

Ok Ok

3828 8 Reciprocating engine 1 carburettor temperature, in degrees

Rankine, as a double (FLOAT64). [FSUIPC version 3.401 or

later]

Ok Ok

383C 4 Reciprocating engine 1 emergency boost active flag (32-bit

BOOLEAN). On some aircraft this controls whether the

supercharger is active or not.

Ok Ok

3840 8 Reciprocating engine 1 emergency boost elapsed time in

seconds, as a double (FLOAT64). This counts how long the

boost has been engaged, when it is made active by an FS control.

FS turns it off when reaching 312. You can keep it going by

occasionally writing 0 here.

Ok Ok

3848 8 Reciprocating engine 1 wastegate position (read-only,

effectively)

Ok Ok

3868 8 Reciprocating engine 1 fuel pressure (double or FLOAT64) Ok Ok

3880 4 Reciprocating engine 1 tank selector, using the same numbers as

0AF8.

Ok Ok

3888 4 Reciprocating engine 1, number of fuel tanks supplying fuel. Ok Ok

3894 4 Reciprocating engine 1, fuel available flag (0 or 1). Ok Ok

38A8 8 General engine 4 throttle lever position, as a double (FLOAT64).

0.0=idle, 1.0=max

Ok Ok

38B0 8 General engine 4 mixture lever position, as a double

(FLOAT64). 0.0=cutoff, 1.0=full rich

Ok Ok

38B8 8 General engine 4 propeller lever position, as a double

(FLOAT64). 0–1

Ok Ok

3918 8 General engine 4 oil temperature in degrees Rankine, as a double

(FLOAT64).

Ok Ok

3920 8 General engine 4 oil pressure in lbs/sqft, as a double

(FLOAT64). Divide by 144 for PSI.

Ok Ok

3930 8 General engine 4 EGT in degrees Rankine, as a double

(FLOAT64). Convert to Fahrenheit by Rankine – 459.67. FS

default gauges show Centigrade.

Ok Ok

3938 4 Engine 4 generator switch, a 32-bit BOOL (0 = off, 1= on)

[FS2000–FS2004 only]

Ok Ok

393C 4 Engine 4 generator active, a 32-bit BOOL (0 = off, 1= on)

[FS2000–FS2004 only]

Ok Ok

3958 4 Engine 4 fuel pump switch, a 32-bit BOOL (0 = off, 1= on)

[FS2000–FS2004 only]

Ok Ok

3968 8 General engine 3 throttle lever position, as a double (FLOAT64).

0.0=idle, 1.0=max

Ok Ok

3970 8 General engine 3 mixture lever position, as a double

(FLOAT64). 0.0=cutoff, 1.0=full rich

Ok Ok

3978 8 General engine 3 propeller lever position, as a double

(FLOAT64). 0–1

Ok Ok

39D8 8 General engine 3 oil temperature in degrees Rankine, as a double

(FLOAT64).

Ok Ok

39E0 8 General engine 3 oil pressure in lbs/sqft, as a double

(FLOAT64). Divide by 144 for PSI.

Ok Ok

39F0 8 General engine 3 EGT in degrees Rankine, as a double

(FLOAT64). Convert to Fahrenheit by Rankine – 459.67. FS

default gauges show Centigrade.

Ok Ok

39F8 4 Engine 3 generator switch, a 32-bit BOOL (0 = off, 1= on)

[FS2000–FS2004 only]

Ok Ok

39FC 4 Engine 3 generator active, a 32-bit BOOL (0 = off, 1= on)

[FS2000–FS2004 only]

Ok Ok

3A18 4 Engine 3 fuel pump switch, a 32-bit BOOL (0 = off, 1= on)

[FS2000–FS2004 only]

Ok Ok

3A28 8 General engine 2 throttle lever position, as a double (FLOAT64).

0.0=idle, 1.0=max

Ok Ok

3A30 8 General engine 2 mixture lever position, as a double Ok Ok

(FLOAT64). 0.0=cutoff, 1.0=full rich

3A38 8 General engine 2 propeller lever position, as a double

(FLOAT64). 0–1

Ok Ok

3A98 8 General engine 2 oil temperature in degrees Rankine, as a double

(FLOAT64).

Ok Ok

3AA0 8 General engine 2 oil pressure in lbs/sqft, as a double

(FLOAT64). Divide by 144 for PSI.

Ok Ok

3AB0 8 General engine 2 EGT in degrees Rankine, as a double

(FLOAT64). Convert to Fahrenheit by Rankine – 459.67. FS

default gauges show Centigrade.

Ok Ok

3AB8 4 Engine 2 generator switch, a 32-bit BOOL (0 = off, 1= on)

[FS2000–FS2004 only]

Ok Ok

3ABC 4 Engine 2 generator active, a 32-bit BOOL (0 = off, 1= on)

[FS2000–FS2004 only]

Ok Ok

3AD8 4 Engine 2 fuel pump switch, a 32-bit BOOL (0 = off, 1= on)

[FS2000–FS2004 only]

Ok Ok

3AE8 8 General engine 1 throttle lever position, as a double (FLOAT64).

0.0=idle, 1.0=max

Ok Ok

3AF0 8 General engine 1 mixture lever position, as a double

(FLOAT64). 0.0=cutoff, 1.0=full rich

Ok Ok

3AF8 8 General engine 1 propeller lever position, as a double

(FLOAT64). 0–1

Ok Ok

3B58 8 General engine 1 oil temperature in degrees Rankine, as a double

(FLOAT64).

Ok Ok

3B60 8 General engine 1 oil pressure in lbs/sqft, as a double

(FLOAT64). Divide by 144 for PSI.

Ok Ok

3B70 8 General engine 1 EGT in degrees Rankine, as a double

(FLOAT64). Convert to Fahrenheit by Rankine – 459.67. FS

default gauges show Centigrade.

Ok Ok

3B78 4 Engine 1 generator switch, a 32-bit BOOL (0 = off, 1= on)

[FS2000–FS2004 only]

Ok Ok

3B7C 4 Engine 1 generator active, a 32-bit BOOL (0 = off, 1= on)

[FS2000–FS2004 only]

Ok Ok

3B98 4 Engine 1 fuel pump switch, a 32-bit BOOL (0 = off, 1= on)

[FS2000–FS2004 only]

Ok Ok

3BA0 8 The tailhook position, as a double floating point value (0.0=fully

retracted, 1.0=fully lowered). [FS2002 and FS2004 only]

Ok Ok

3BA8 40 Area used by PFC.DLL for axis input, for optional assignment

and calibration in FSUIPC.

When the PFC driver is not being used, other programs can make

use of these offsets to input axis values directly to FSUIPC,

which also can then be assigned in FSUIPC and thence

calibrated. Note that by default FSUIPC assumes that the normal

input here is in the range 0–127, and scales it accordingly. For

applications supplying a greater range, possibly up to the

maximum allowed for joysticks (–16383 to +16383) you can

either use the ―RAW‖ option, or, better, let FSUIPC adjust its

scaling to suit the range being input. It will adjust this

automatically upon seeing the extreme values, or you can preset

the scaling using a parameter added to the axis assignments line

in the INI file.

When the PFC driver is running, application programs or

modules can access the raw PFC axis values at these offsets,

which are assigned to the hardware as listed below. One 16-bit

word is allowed for each (although the PFC axes have a

maximum range of 0 to 127). The axes are:

 3BA8 0 Aileron

Ok Ok

 3BAA 1 Elevator

 3BAC 2 Rudder

 3BAE 3 Quadrant axis 5

 3BB0 4 Quadrant axis 3

 3BB2 5 Quadrant axis 1

 3BB4 6 Left toe brake

 3BB6 7 Quadrant axis 6

 3BB8 8 Quadrant axis 4

 3BBA 9 Quadrant axis 2

 3BBC 10 Right toe brake

 3BBE 11 Elevator trim

 3BC0 12 Aileron trim

 3BC2 13 Rudder trim

 3BC4 14 Steering tiller

 3BC6 15 not used

There are control flags (to disconnect these axes) at offset 3BC8.

Each bit, 2^0 to 2^15 can be set to disconnect the equivalent

numbered axis above.
3BD2 2 This is a 16-bit counter that is incremented each time a FLT file

is saved in FS. This applies to flights saved through FS Flights

menu, the shortcut key (;), AutoSave, and via the FSUIPC flight

saving facilities.

The filenames of the saved flights can be read at offset 0400, or

(historically) by using the path reading facility at offset 0FF0 and

following.

Ok Ok

3BD6 18 Panel failure modes (FS2002 and FS2004 only): one byte

flag/control for each of the following ―partial panel‖ modes:

 3BD6 ADF (both on FS2004)

 3BD7 ASI

 3BD8 Altimeter

 3BD9 Attitude Indicator

 3BDA COMM1

 3BDB COMM2

 3BDC Compass

 3BDD ? (unknown)

 3BDE Engine (see 0B6B for separate engines)

 3BDF Fuel Indicator

 3BE0 Heading Indicator

 3BE1 NAV1

 3BE2 NAV2

 3BE3 Pitot heat

 3BE4 Transponder

 3BE5 Turn Co-ordinator

 3BE6 Vacuum

 3BE7 VSI

Ok Ok

3BE8 8 Attitude Indicator failure timer, as a double floating point value. No No

3BF0 4 Attitude indicator lock indicator, 32-bit integer but probable only

Boolean (0 or 1) [FS2k/CFS2 only]

No No

3BF4 4 Low vacuum indicator, 32-bit integer but probable only Boolean

(0 or 1) [FS2k/CFS2 only]

No No

3BFA 2 Flaps détente increment. The full range of flap movement is 0–

0x3FFF (16383). Each détente position or ―notch‖ is spaced

equally over this range, no matter what flap angle is

represented—a table in the AIR file gives those. To obtain the

number of détentes, divide this increment value into 16383 and

add 1. For example 2047 (0x7FF) would be the increment for 9

positions as on the default FS2K 737.

Ok Ok

3BFC 4 Zero Fuel Weight, lbs * 256. This is the aircraft weight plus the Ok Ok

payload weight, minus fuel. In FS2004 this changes as the

payload is adjusted.

3C00 256 Pathname of the current AIR file, excluding the FS main path

(see 3E00), but including everything from ―Aircraft\…‖ to the

final ―…air‖. This is zero padded to fill the 256 bytes available.

When this changes the 16-bit counter at 32FC is incremented, so

interested programs don‘t have to keep on reading the whole 256

bytes to check.

Ok Ok

3D00 256 Name of the current aircraft (from the ―title‖ parameter in the

AIRCRAFT.CFG file). Valid for FS2K only.

Ok Ok

3E00 256 Path of the Flight Simulator installation, down to and including

the FS main folder and a following \ character. If the PC is on a

Network and WideFS is in use then the full UNC (universal

naming convention) path is given if possible. Examples are:

 D:\FS2000\ (non-Network)

 \\MyMainPC\drived\FS2000\

 (Network, named PC and named shared drive)

Ok Ok

3F00 2 To load or save a Flight (FS2000/2002/FS2004) or Situation

(FS98) you first set up the pathname (and optional description) at

offset 3F04 below, then write here. Write one of these values:

 0 to simply load the specified flight/situation.

 1 to save the flight/situation with an empty

description

 257 to save the flight/situation with a description as

well

This facility works on FS98 through to FS2004 but not CFS1 nor

CFS2. Also note that excepting FS2004, for Loading you don‘t

have to have the files in the ―Pilots‖ or ―Situatio‖ folder (or

―flights‖ for FS2002)—any folder within the FS main folder can

be used to load Flights/Situations. However, they can only be

saved in ―Pilots‖ (FS98/FS2000) or ―Flights\MyFlts‖ (FS2002),

and this folder is assumed by default.

On FS2004 flights are saved in the ―My Documents‖ FS folder.

Flights are loaded by default from there too – you don‘t have to

specify a path.

If you are Loading a file, please allow time for the file to load

before expecting any further meaningful response across the

FSUIPC interface. FSUIPC will probably not be able to respond

for several seconds even on the fastest machines.

Ok Ok

3F02 2 FLT/STN file loading counter (incremented by FSUIPC

whenever the FLT or STN file, as defined at offset 3F04 changes

or is reloaded). This word is read only—attempting to write here

will do no harm.

Ok Ok

3F04 252 READ: (FS2000/2002/2004 only)

Pathname of the currently loaded FLT file, excluding the FS

main path (see 3E00) where applicable, but including everything

from ―Pilots\…‖ or ―Situatio\…‖ (or ―Flights\‖ in FS2002), or

whatever, to the final ―.flt‖ or ―.stn‖. This is zero padded to fill

the 252 bytes available, or truncated if longer.

If the path is outside FS‘s own path then it is given in UNC

format if possible when WideFS is in use.

When this changes (or simply reloaded) the 16-bit counter at

3F02 is incremented, so interested programs don‘t have to keep

on reading the whole 252 bytes to check.

Ok Ok

WRITE: (FS2000, FS2002, FS2004 and FS98)

Write the file name for the FLT+WX (FS2000/FS2002) or STN

(FS98) file you wish to Load or Save. The name can include the

final ―.flt‖ or ―.stn‖ but this will be discarded in any case. You

can specify a folder (existing within FS‘s main folder) such as

―Pilots\‖ or ―Situatio\‖ (―Flights\MyFlts\‖ in FS2002) for

Loading, but files can only be saved to ―Pilots\‖ in FS98/2000,

―Flights\MyFlts\‖ in FS2002 and in your documents folder in

FS2004. If you give a path for saving, it is discarded. There must

be a zero terminator.

If you are writing the file, a description can also be specified,

following the pathname and its zero terminator. Obviously this is

limited by the space available. It must also be terminated by a

zero byte, and indicated in the value written to 3F00 above.

See 3F00 above for details of actually Loading or Saving the

Flight or Situation so identified.

4000 512 Reserved

4200 256 FSUIPC's sound playing interface: see earlier section

4300 7424 Reserved

6000 512 FS2004 GPS data area—only known offsets listed below: No Yes

6004 4 FS2004 GPS flags (bits numbered from least significant):

 0 ?

1 Active Plan

2 Active Way point

3 Arrived

4 ?

5 Direct To

6 ?

7 Active way point locked

8 Approach loaded

9 Approach Active

No Yes

6008 4 FS2004 GPS: Unknown progress flags No Yes

600C 4 FS2004 GPS: Zulu time in seconds since midnight No Yes

6010 8 FS2004 GPS: aircraft latitude, floating point double, in degrees

(+ve = N, –ve = S).

No Yes

6018 8 FS2004 GPS: aircraft longitude, floating point double, in degrees

(+ve = E, –ve = W).

No Yes

6020 8 FS2004 GPS: aircraft altitude, floating point double, in metres. No Yes

6028 8 FS2004 GPS: magnetic variation at aircraft, floating point

double, in radians (add to magnetic for true, subtract from true

for magnetic).

No Yes

6030 8 FS2004 GPS: aircraft ground speed, floating point double,

metres per second.

No Yes

6038 8 FS2004 GPS: aircraft true heading, floating point double, in

radians.

No Yes

6040 8 FS2004 GPS: aircraft magnetic track, floating point double, in

radians.

No Yes

6048 8 FS2004 GPS: distance to next waypoint, floating point double, in

metres.

No Yes

6050 8 FS2004 GPS: magnetic bearing to next waypoint, floating point

double, in radians.

No Yes

6058 8 FS2004 GPS: cross track error, floating point double, in metres. No Yes

6060 8 FS2004 GPS: required true heading, floating point double, in

radians.

No Yes

6068 8 FS2004 GPS: track error, floating point double, in radians.

6078 8 FS2004 GPS: aircraft vertical speed (Needs checking) No

6080 1 FS2004 GPS: previous waypoint valid flag (=0 if not valid) No Yes

6081 6? FS2004 GPS: string ID of previous way point, zero terminated No Yes

608C 8 FS2004 GPS: previous waypoint latitude, floating point double,

in degrees (+ve = N, –ve = S).

No Yes

6094 8 FS2004 GPS: previous waypoint longitude, floating point

double, in degrees (+ve = E, –ve = W).

No Yes

609C 8 FS2004 GPS: previous waypoint aircraft altitude, floating point

double, in metres.

No Yes

60A4 6? FS2004 GPS: string ID of next waypoint, zero terminated No Yes

60AC 8 FS2004 GPS: next way point latitude, floating point double, in

degrees (+ve = N, –ve = S).

No Yes

60B4 8 FS2004 GPS: next waypoint longitude, floating point double, in

degrees (+ve = E, –ve = W).

No Yes

60BC 8 FS2004 GPS: next waypoint aircraft altitude, floating point

double, in metres.

No Yes

60E4 4 FS2004 GPS: Next waypoint ETE as 32-bit integer, in seconds No Yes

60E8 4 FS2004 GPS: Next waypoint ETA as 32-bit integer in seconds,

local time

No Yes

60EC 8 FS2004 GPS: Distance to next waypoint, floating point double,

in metres

No Yes

60F4 8 FS2004 GPS: Distance between previous and next waypoints,

floating point double, in metres

No Yes

60FC 4 FS2004 GPS: Approach mode, as 32-bit integer (needs checking) No

6100 4 FS2004 GPS: Approach way point type, as 32-bit integer (needs

checking)

No

6104 4 FS2004 GPS: Approach segment type, as 32-bit integer (needs

checking)

No

6108 1 FS2004 GPS: Approach mode, flag indicating approach

waypoint is the runway (needs checking)

No

610C 8 FS2004 GPS: Course to set (CTS), floating point double, in

radians

No Yes

6120 4 FS2004 GPS: Flight Plan, total number of waypoints, as 32-bit

integer

No Yes

6128 4 FS2004 GPS: Approach way point count, as 32-bit integer (needs

checking)

No

6137 5 FS2004 GPS: Flight plan destination airport ID

(This appears to have been optimistic. I can‟t find the

destination ID)

No No?

613C 4 FS2004 GPS: Approach way point index, as 32-bit integer (needs

checking)

No

6140 8 FS2004 GPS: Approach name No Yes

6150 4 FS2004 GPS: Approach transition index, as 32-bit integer (needs

checking). –1 means not valid.

No

6154 8 FS2004 GPS: Approach transition name No Yes

615C 1 FS2004 GPS: Approach is missed flag (needs checking) No

6160 4 FS2004 GPS: Approach type (needs checking) No

6168 4 FS2004 GPS: Approach time zone deviation, as 32-bit integer

(needs checking)

No

616C 4 FS2004 GPS: Current way point index, starting at 1, as 32-bit

integer

No Yes

6170 4 FS2004 GPS: Approach current way point index, as 32-bit

integer (needs checking)

No

6178 8 FS2004 GPS: Unknown double floating point value No Yes

6180 8 FS2004 GPS: Unknown double floating point value No Yes

6188 8 FS2004 GPS: Unknown double floating point value No Yes

6190 4 FS2004 GPS: Time last waypoint was crossed, seconds since

Zulu midnight

No Yes

6198 4 FS2004 GPS: Destination ETE as 32-bit integer, in seconds No Yes

619C 4 FS2004 GPS: Destination ETA as 32-bit integer, in seconds,

local time

No Yes

61A0 8 FS2004 GPS: Route total distance, double floating point, in

metres

No Yes

61A8 8 FS2004 GPS: Estimated fuel burn, double floating point, in

gallons

No Yes

61B0 4 FS2004 GPS: Time of last update to 61B8 (seconds since Zulu

midnight)

No Yes

61B8 4 FS2004 GPS: Count updated every 5 seconds. (purpose as yet

unknown)

No Yes

6200 1216 Reserved

66C0 64 Free for general use, for example in button or keys

programming.

6700 1632 Reserved

6D60 32 FSUIPC message window title—up to 32 characters including a

zero terminator. (FS2004 only)

The message window title can be set by the program using it, but

as only one such Window is supported only one title is available.

The first program writing it and then a multiline message wins!

This only needs doing once, immediately before any multiline

messages are sent to 3380.

No Yes

6D80 1408 Reserved

7300 112 Available for applications: apply for allocations to Pete Dowson

7370 1504 Reserved

7840 144 Available for applications: apply for allocations to Pete Dowson

78D0 1840 Reserved

8000 768 Reserved for FSUIPC and WideFS internals

8300 256 Area in FS2002 and FS2004 reporting and controlling assorted

views. Details of those values known follow. This information

has been supplied by Matthias Neusinger.

8320 1 Byte value, the view mode in the currently selected window

(read/write):

FS2004: 1=cockpit, 2=virtual cockpit, 3=tower, 4=spot

plane, 5=top down

FS2002: 0=cockpit, 1=virtual cockpit, 2=tower, 4=spot

plane, 7=top down

Ok Ok

832C 2 Zoom setting for selected window in cockpit mode (64 = 1x),

read/write

Ok Ok

832E 2 Zoom setting for selected window in virtual cockpit mode (64 =

1x), read/write

Ok Ok

8330 2 Zoom setting for selected window in tower mode (64 = 1x),

read/write

Ok Ok

8334 2 Zoom setting for selected window in spot plane mode (64 = 1x),

read/write

Ok Ok

8336 2 Zoom setting for selected window in top down mode (64 = 1x),

read/write

Ok Ok

833C 2 Relative direction of spot plane from user aircraft, read/write (in

degrees in usual 360 = 65536 format).

Ok Ok

8340 4 Distance of spot plane from user aircraft, read/write (in metres *

256).

Ok Ok

8345 1 Spot plane transition: gradual is 0, instant if 1. (read/write) Ok Ok

8348 4 Relative altitude of spot plane from user aircraft, read/write (in

metres * 256).

Ok Ok

83BC 24 View point latitude/longitude/altitude, exactly as at offset 05B0.

Read only, FS2004 only.

No Ok

83D4 12 View point pitch, bank and heading, in same format as that for

the user‘s aircraft at offset 0578. Read only, FS2004 only.

No Ok

8600 232 Available for applications: apply for allocations to Pete Dowson

86E8 2328 Reserved

9000 2048 Reserved for future improvements

9800 1024 Used by Wideclient's Lua display control

9C00 9216 Reserved

C000 4096 FS2004 New Weather Interface areas, allowing both local and

global weather data to be read and written.

(details of the NWI are provided separately in the SDK)

No Ok

D000 2048 FS2004 A.I. ground aircraft additional traffic data (see section on

AI Traffic earlier)

No Ok

D800 2048 FS2004 A.I. airborne aircraft additional traffic data (see section

on AI Traffic earlier)

No Ok

E000 4096 FS2002/4 A.I. ground aircraft traffic data (see section on AI

Traffic earlier)

Ok Ok

F000 4096 FS2002/4 A.I. airborne aircraft traffic data (see section on AI

Traffic earlier)

Ok Ok

* The FS2004 column in the above table is a work-in-progress. In particular, those entries left blank are currently

―don‘t knows‖, awaiting checking.

NOTE on aircraft dynamic values: (thanks to Ian Donohoe)

The aircraft linear velocity and acceleration values are, of course, related to specific references. In the cases of the

values given these are the ―body axes‖, and the ―world axes‖. This can become more confusing because of the

different ways of naming the axes. In the FS2000 .FLT files (the [SimVars] section), and in the table above, the

names are different to those generally used in engineering and mathematics, as follows:

Description FS notation Engineering

Lateral, left–right X Y

Vertical, up-down Y Z

Longitudinal, forward–backward Z X

Pitch P Q

Roll, or bank B P

Yaw, or heading H R

Here are more specific definitions of the sets of linear reference axes themselves:

 World frame of reference:

X-axis (Z-axis in FS) = True North-South

Y-axis (X-axis in FS) = True East-West

Z-axis (Y-axis in FS) = True Vertical

Body Frame Of Reference:

X-axis (Z in FS) = longitudinal through CG

Y-axis (X in FS) = lateral through CG

Z-axis (Y in FS) = vertical (in body terms) through CG

There‘s a complication with the body frame in deciding the longitudinal centreline from which the other axes are

offset by 90 degrees. This is generally taken to be the zero lift line (i.e. alpha at which there is zero lift).

Note that some of the values obtained from FS2002 may not abide by exactly the same rules—but this is noted

against the specific values in the Table. Clarification will be added as more details are discovered.

Table of additional PANELS variables for FS2000

Please refer to the Microsoft FS Panels SDK for more details of both the token variable names and the meanings of

the assorted ―type‖ names. In particular the file ―gauges.h‖ contains these details. (Similar names, but more of them,

apply to FS2002 and FS2004).

These variables can be read or written via FSUIPC since version 1.94, or through WideFS from version 3.96, but

none of them are guaranteed, and they may not be carried over into future versions of FS or FSUIPC.

A program called ―FSLOOK2.EXE‖ is supplied with this document which can be run with FSUIPC or WideFS and

which will display all the tokenised variables listed (but not the extras added by FSUIPC, without token names).

Click ―file‖ and select ―AutoRefresh‖ to see the values updated as you use FS.

With a few exceptions, as noted, access to these variables under FS98 will simply obtain zeroes on reading, and

writes will be discarded. FSUIPC will not crash. But take care if you are using FS6IPC on FS98. These offsets will

refer to completely different things in FS98 with FS6IPC, or will likely crash FS98.

The table is organised in order of the offsets assigned. Most variables are 4 or 8 bytes in length. Addresses in the

2000–3FFF range which are not implied by this list may read/write useful data—check the table above for uses of

some addresses in this range by FSUIPC‘s mapping—but if so it is not identified here. Because of the way the

mapping works, some such accesses may merely obtain one of the other listed values.

Offset Token Name Token Id Type FS2002 FS2004

2054 TURB_ENGINE_1_TANK_SELECTOR 635 SINT32 Yes Use 3880

2058 TURB_ENGINE_1_TANKS_USED 636 SINT32 Yes Use 3888

2068 TURB_ENGINE_1_FUEL_AVAILABLE 639 BOOL Yes Use 3894

2074 TURB_ENGINE_1_PCT_AREA 640 FLOAT64 Yes

2084 TURB_ENGINE_1_VIBRATION 642 FLOAT64 Yes

2154 TURB_ENGINE_2_TANK_SELECTOR 654 SINT32 Yes Use 37C0

2158 TURB_ENGINE_2_TANKS_USED 655 SINT32 Yes Use 37C8

2168 TURB_ENGINE_2_FUEL_AVAILABLE 658 BOOL Yes Use 37D4

2174 TURB_ENGINE_2_PCT_AREA 659 FLOAT64 Yes

2184 TURB_ENGINE_2_VIBRATION 661 FLOAT64 Yes

2254 TURB_ENGINE_3_TANK_SELECTOR 673 SINT32 Yes Use 3700

2258 TURB_ENGINE_3_TANKS_USED 674 SINT32 Yes Use 3708

2268 TURB_ENGINE_3_FUEL_AVAILABLE 677 BOOL Yes Use 3714

2274 TURB_ENGINE_3_PCT_AREA 678 FLOAT64 Yes

2284 TURB_ENGINE_3_VIBRATION 680 FLOAT64 Yes

2354 TURB_ENGINE_4_TANK_SELECTOR 692 SINT32 Yes Use 3640

2358 TURB_ENGINE_4_TANKS_USED 693 SINT32 Yes Use 3648

2368 TURB_ENGINE_4_FUEL_AVAILABLE 696 BOOL Yes Use 3654

2374 TURB_ENGINE_4_PCT_AREA 697 FLOAT64 Yes

2384 TURB_ENGINE_4_VIBRATION 699 FLOAT64 Yes

2420 PROPELLER_1_FEATHERING_INHIBIT 704 BOOL Yes

2424 PROPELLER_1_FEATHERED 705 BOOL Yes

2428 PROPELLER_1_SYNC_DELTA_LEVER 706 FLOAT64 Yes

2430 PROPELLER_1_AUTOFEATHER_ARMED 707 BOOL Yes

2520 PROPELLER_2_FEATHERING_INHIBIT 712 BOOL Yes

2524 PROPELLER_2_FEATHERED 713 BOOL Yes

2528 PROPELLER_2_SYNC_DELTA_LEVER 714 FLOAT64 Yes

2530 PROPELLER_2_AUTOFEATHER_ARMED 715 BOOL Yes

2620 PROPELLER_3_FEATHERING_INHIBIT 720 BOOL Yes

2624 PROPELLER_3_FEATHERED 721 BOOL Yes

2628 PROPELLER_3_SYNC_DELTA_LEVER 722 FLOAT64 Yes

2630 PROPELLER_3_AUTOFEATHER_ARMED 723 BOOL Yes

2720 PROPELLER_4_FEATHERING_INHIBIT 728 BOOL Yes

2724 PROPELLER_4_FEATHERED 729 BOOL Yes

2728 PROPELLER_4_SYNC_DELTA_LEVER 730 FLOAT64 Yes

2730 PROPELLER_4_AUTOFEATHER_ARMED 731 BOOL Yes

2824 TOTAL_LOAD_AMPS 750 FLOAT64 Yes

282C BATTERY_LOAD 751 FLOAT64 Yes

2834 BATTERY_VOLTAGE 752 FLOAT64 Yes

2840 MAIN_BUS_VOLTAGE 753 FLOAT64 Yes

2848 MAIN_BUS_AMPS 754 FLOAT64 Yes

2850 AVIONICS_BUS_VOLTAGE 755 FLOAT64 Yes

2858 AVIONICS_BUS_AMPS 756 FLOAT64 Yes

2860 HOT_BATTERY_BUS_VOLTAGE 757 FLOAT64 Yes

2868 HOT_BATTERY_BUS_AMPS 758 FLOAT64 Yes

2870 BATTERY_BUS_VOLTAGE 759 FLOAT64 Yes

2878 BATTERY_BUS_AMPS 760 FLOAT64 Yes

2880 GENERATOR_ALTERNATOR_1_BUS_VOLTAGE 761 FLOAT64 Yes

2888 GENERATOR_ALTERNATOR_1_BUS_AMPS 762 FLOAT64 Yes

2890 GENERATOR_ALTERNATOR_2_BUS_VOLTAGE 763 FLOAT64 Yes

2898 GENERATOR_ALTERNATOR_2_BUS_AMPS 764 FLOAT64 Yes

28A0 GENERATOR_ALTERNATOR_3_BUS_VOLTAGE 765 FLOAT64 Yes

28A8 GENERATOR_ALTERNATOR_3_BUS_AMPS 766 FLOAT64 Yes

28B0 GENERATOR_ALTERNATOR_4_BUS_VOLTAGE 767 FLOAT64 Yes

28B8 GENERATOR_ALTERNATOR_4_BUS_AMPS 768 FLOAT64 Yes

2A00 ELEVON_1_DEFLECTION 809 FLOAT64 Yes

2A08 ELEVON_2_DEFLECTION 810 FLOAT64 Yes

2A10 ELEVON_3_DEFLECTION 811 FLOAT64 Yes

2A18 ELEVON_4_DEFLECTION 812 FLOAT64 Yes

2A20 ELEVON_5_DEFLECTION 813 FLOAT64 Yes

2A28 ELEVON_6_DEFLECTION 814 FLOAT64 Yes

2A30 ELEVON_7_DEFLECTION 815 FLOAT64 Yes

2A38 ELEVON_8_DEFLECTION 816 FLOAT64 Yes

2B08 HYDRAULICS1_PRESSURE_PSF 732 FLOAT64 Yes

2B1C HYDRAULICS1_RESERVOIR_PCT 733 FLOAT64 Yes

2C08 HYDRAULICS2_PRESSURE_PSF 734 FLOAT64 Yes

2C1C HYDRAULICS2_RESERVOIR_PCT 735 FLOAT64 Yes

2D08 HYDRAULICS3_PRESSURE_PSF 736 FLOAT64 Yes

2D1C HYDRAULICS3_RESERVOIR_PCT 737 FLOAT64 Yes

2E08 HYDRAULICS4_PRESSURE_PSF 738 FLOAT64 Yes

2E1C HYDRAULICS4_RESERVOIR_PCT 739 FLOAT64 Yes

2E90 STANDBY_VACUUM_CIRCUIT_ON 778 BOOL No

2F00 CG_AFT_LIMIT 796 FLOAT64 No

2F08 CG_FWD_LIMIT 797 FLOAT64 No

2F10 CG_MAX_MACH 798 FLOAT64 Yes

2F18 CG_MIN_MACH 799 FLOAT64 Yes

2F20 CONCORDE_VISOR_NOSE_HANDLE 805 SINT32 Yes

2F28 CONCORDE_VISOR_POS_PCT 806 FLOAT64 Yes

2F30 CONCORDE_NOSE_ANGLE 807 FLOAT64 Yes

2F38 GEAR_POS_TAIL 808 FLOAT64 No

2F40 AUTOPILOT_MAX_SPEED 820 FLOAT64 Yes

2F48 AUTOPILOT_CRUISE_SPEED 821 FLOAT64 Yes

2F50 BARBER_POLE_MACH 822 FLOAT64 Yes

2F58 SELECTED_FUEL_TRANSFER_MODE 823 SINT32 Yes

2F60 HYDRAULIC_SYSTEM_INTEGRITY 824 FLOAT64 Yes

2F68 ATTITUDE_CAGE_BUTTON 825 BOOL Yes

3420 RAD_INS_SWITCH 613 BOOL32 Yes

3424 LOW_HEIGHT_WARNING 616 BOOL32 No

3428 DECISION_HEIGHT 615 FLOAT64 Yes

3438 ENGINE_1_FUELFLOW_BUG_POSITION 801 FLOAT64 Yes

3440 ENGINE_2_FUELFLOW_BUG_POSITION 802 FLOAT64 Yes

3448 ENGINE_3_FUELFLOW_BUG_POSITION 803 FLOAT64 Yes

3450 ENGINE_4_FUELFLOW_BUG_POSITION 804 FLOAT64 Yes

3458 PANEL_AUTOPILOT_SPEED_SETTING 817 FLOAT64 Yes

3460 AUTOPILOT_AIRSPEED_HOLD_CURRENT 819 BOOL No

34D0 G_FORCE_MAXIMUM 605 FLOAT64 No

34D8 G_FORCE_MINIMUM 606 FLOAT64 No

34E8 ENGINE1_MAX_RPM 608 UINT32 No

34EC ENGINE2_MAX_RPM 609 UINT32 No

34F0 ENGINE3_MAX_RPM 610 UINT32 No

34F4 ENGINE4_MAX_RPM 611 UINT32 No

3550 ENGINE4_THROTTLE_LEVER_POS 233 SINT16 No

3552 ENGINE4_PROPELLER_LEVER_POS 234 UINT16 No

3554 ENGINE4_MIXTURE_LEVER_POS 235 UINT16 No

3556 ENGINE4_STARTER_SWITCH_POS 237 ENUM16 No

3558 ENGINE4_MAGNETO_LEFT 238 BOOL16 No

355A ENGINE4_MAGNETO_RIGHT 239 BOOL16 No

3560 ENGINE3_THROTTLE_LEVER_POS 198 SINT16 No

3562 ENGINE3_PROPELLER_LEVER_POS 199 UINT16 No

3564 ENGINE3_MIXTURE_LEVER_POS 200 UINT16 No

3566 ENGINE3_STARTER_SWITCH_POS 202 ENUM16 No

3568 ENGINE3_MAGNETO_LEFT 203 BOOL16 No

356A ENGINE3_MAGNETO_RIGHT 204 BOOL16 No

3570 ENGINE2_THROTTLE_LEVER_POS 163 SINT16 No

3572 ENGINE2_PROPELLER_LEVER_POS 164 UINT16 No

3574 ENGINE2_MIXTURE_LEVER_POS 165 UINT16 No

3576 ENGINE2_STARTER_SWITCH_POS 167 ENUM16 No

3578 ENGINE2_MAGNETO_LEFT 168 BOOL16 No

357A ENGINE2_MAGNETO_RIGHT 169 BOOL16 No

3580 ENGINE1_THROTTLE_LEVER_POS 128 SINT16 No

3582 ENGINE1_PROPELLER_LEVER_POS 129 UINT16 No

3584 ENGINE1_MIXTURE_LEVER_POS 130 UINT16 No

3586 ENGINE1_STARTER_SWITCH_POS 132 ENUM16 No

3588 ENGINE1_MAGNETO_LEFT 133 BOOL16 No

358A ENGINE1_MAGNETO_RIGHT 134 BOOL16 No

35B8 RECIP_ENGINE4_CARB_HEAT_POS 513 FLOAT64 No

35C0 RECIP_ENGINE4_ALTERNATE_AIR_POS 514 FLOAT64 Yes

35C8 RECIP_ENGINE4_COOLANT_RESERVOIR_PCT 515 FLOAT64 Yes

35F0 RECIP_ENGINE4_STARTER_TORQUE 522 FLOAT64 Yes

35F8 RECIP_ENGINE4_TURBOCHARGER_FAILED 524 BOOL Yes

3610 RECIP_ENGINE4_TIT_DEGR rankine 531 FLOAT64 Yes

3618 RECIP_ENGINE4_CHT_DEGR 532 FLOAT64 Yes

3644 RECIP_ENGINE4_TANKS_USED 540 FLAGS Yes

3678 RECIP_ENGINE3_CARB_HEAT_POS 474 FLOAT64 No

3680 RECIP_ENGINE3_ALTERNATE_AIR_POS 475 FLOAT64 Yes

3688 RECIP_ENGINE3_COOLANT_RESERVOIR_PCT 476 FLOAT64 Yes

36B0 RECIP_ENGINE3_STARTER_TORQUE 483 FLOAT64 Yes

36B8 RECIP_ENGINE3_TURBOCHARGER_FAILED 485 BOOL Yes

36D0 RECIP_ENGINE3_TIT_DEGR rankine 492 FLOAT64 Yes

36D8 RECIP_ENGINE3_CHT_DEGR 493 FLOAT64 Yes

3704 RECIP_ENGINE3_TANKS_USED 501 FLAGS Yes

3738 RECIP_ENGINE2_CARB_HEAT_POS 435 FLOAT64 No

3740 RECIP_ENGINE2_ALTERNATE_AIR_POS 436 FLOAT64 Yes

3748 RECIP_ENGINE2_COOLANT_RESERVOIR_PCT 437 FLOAT64 Yes

3770 RECIP_ENGINE2_STARTER_TORQUE 444 FLOAT64 Yes

3778 RECIP_ENGINE2_TURBOCHARGER_FAILED 446 BOOL Yes

3790 RECIP_ENGINE2_TIT_DEGR rankine 453 FLOAT64 Yes

3798 RECIP_ENGINE2_CHT_DEGR 454 FLOAT64 Yes

37C4 RECIP_ENGINE2_TANKS_USED 462 FLAGS Yes

37F8 RECIP_ENGINE1_CARB_HEAT_POS 396 FLOAT64 No

3800 RECIP_ENGINE1_ALTERNATE_AIR_POS 397 FLOAT64 Yes

3808 RECIP_ENGINE1_COOLANT_RESERVOIR_PCT 398 FLOAT64 Yes

3830 RECIP_ENGINE1_STARTER_TORQUE 405 FLOAT64 Yes

3838 RECIP_ENGINE1_TURBOCHARGER_FAILED 407 BOOL Yes

3850 RECIP_ENGINE1_TIT_DEGR rankine 414 FLOAT64 Yes

3858 RECIP_ENGINE1_CHT_DEGR 415 FLOAT64 Yes

3870 ENGINE_PRIMER 361 FLOAT64 Yes

3884 RECIP_ENGINE1_TANKS_USED 423 FLAGS Yes

38A0 GENERAL_ENGINE4_FAILURE 594 BOOL Yes

38A4 RECIP_ENGINE4_COMBUSTION 523 BOOL Yes

38C0 RECIP_ENGINE4_STARTER 518 BOOL Yes

38C0 GENERAL_ENGINE4_STARTER 593 FLOAT64 Yes

3928 RECIP_ENGINE4_OIL_LEAK_PCT 536 FLOAT64 Yes

3940 RECIP_ENGINE4_DAMAGE_PERCENT 545 FLOAT64 Yes

3948 RECIP_ENGINE4_COMBUSTION_SOUND_PCT 543 FLOAT64 Yes

3960 GENERAL_ENGINE3_FAILURE 584 BOOL Yes

3964 RECIP_ENGINE3_COMBUSTION 484 BOOL Yes

3980 RECIP_ENGINE3_STARTER 479 BOOL Yes

3980 GENERAL_ENGINE3_STARTER 583 FLOAT64 Yes

39E8 RECIP_ENGINE3_OIL_LEAK_PCT 497 FLOAT64 Yes

3A00 RECIP_ENGINE3_DAMAGE_PERCENT 506 FLOAT64 Yes

3A08 RECIP_ENGINE3_COMBUSTION_SOUND_PCT 504 FLOAT64 Yes

3A20 GENERAL_ENGINE2_FAILURE 574 BOOL Yes

3A24 RECIP_ENGINE2_COMBUSTION 445 BOOL Yes

3A40 RECIP_ENGINE2_STARTER 440 BOOL Yes

3A40 GENERAL_ENGINE2_STARTER 573 FLOAT64 Yes

3AA8 RECIP_ENGINE2_OIL_LEAK_PCT 458 FLOAT64 Yes

3AC0 RECIP_ENGINE2_DAMAGE_PERCENT 467 FLOAT64 Yes

3AC8 RECIP_ENGINE2_COMBUSTION_SOUND_PCT 465 FLOAT64 Yes

3AE0 GENERAL_ENGINE1_FAILURE 564 BOOL Yes

3AE4 RECIP_ENGINE1_COMBUSTION 406 BOOL Yes

3B00 RECIP_ENGINE1_STARTER 401 BOOL Yes

3B00 GENERAL_ENGINE1_STARTER 563 FLOAT64 Yes

3B68 RECIP_ENGINE1_OIL_LEAK_PCT 419 FLOAT64 Yes

3B80 RECIP_ENGINE1_DAMAGE_PERCENT 428 FLOAT64 Yes

3B88 RECIP_ENGINE1_COMBUSTION_SOUND_PCT 426 FLOAT64 Yes

Final Note for Developers

It is intended that FSUIPC.DLL be maintained and improved to cover more aspects of FS interfacing, as they are found to be needed by applications. A completely

generic interface to several of FS‘s internal facilities and tables has been attempted, but was withdrawn because of the possibilities this extended for really ruining what

little performance most folks are getting with FS in the first place. The data available and control possible is not all neatly concentrated in the one globals area as was the

case with FS98, and it is even more distributed and complex to access in FS2002 and certainly FS2004.

I have therefore decided to add support for specific needs as they arise, rather than to provide anything generic but potentially inefficient. Application Programmers

needing specific items of information, or specific controls into FS2004, should contact me by email in the first instance, with full details. However, it should be noted that

FS2004 is now fairly long in the tooth: if items have not already been found and identified by now then it is most unlikely that anything can be done until the next version

of FS, where a renewed effort would be needed in any case.

Published by Peter L. Dowson, 10
th

 February 2012

