Esound: Extra Sound module for FS98, FS2000, FS2002 and FS2004
by Pete Dowson, 8th October 2003
Version 2.572 of Esound.dll

Please note that this module is no longer supported. If you ask me for help in using it I shall normally have to just refer you back to this document. I don’t use the module myself and only offer it, just as it is, because of demand.

Changes from previous versions

The performance of Esound is changed back to what it was in earlier versions. Version 1.11 had a reduced polling rate for Epic button changes, which gave rise to problems on some folks’ systems. In this new version parameters can be changed to reduce polling rates should the performance of FS98 become degraded by Esound’s operation. See the new Performance section in this document.

A design error in previous versions led to conditional Trigger section switching not working when the named trigger sections were not actually selected in the default [Triggers]. This was because the sections were not loaded beforehand unless a reference was found. References only in conditional trigger sections, or in the panel-related sections, did not actually cause the trigger sections to be loaded—in fact, they cannot do so, as the structure needed for triggers can only house one changing section at a time (the panel-related section).

To fix this it was necessary to add a new section entitled [SwitchedTriggers] in which all conditional trigger section names are listed. This allows Esound to load them initially, and thereby become capable of switching to them when requested in an operated trigger, wherever it may occur. This new section is described in the Multiple Trigger sections: conditional triggers section below.

Version 1.21 quickly followed 1.20 to fix a silly new error preventing the multiple condition testing from working.

Version 1.23 corrects further errors causing problems on panel-related triggers when the panel is changed in FS98. To ensure everything starts correctly after such a change, the configuration is now entirely reset at such times (the CFG file is actually re-read). Additionally, the last panel name is remembered so that, after any manual change to the CFG file, the correct panel-related section is reloaded without having to force reset the FS98 panel loading.

Version 1.24 corrects what is hopefully the last bug in the panel-related sound actions: EPIC button pressings in panel Trigger sections were ignored if there were no button references in any of the normal/conditional trigger sections. (This bug would not have affected many users, and certainly no non-EPIC users).

Version 1.25 only contains a small change which may allow Esound to operate correctly with FS2000 when it becomes available. This is in no way certain, but at least there’s now a chance!

Version 1.30 detects panel changes itself if EPICINFO.DLL is not present. It obtains the reference name from a “Ref=<name>” entry in either an [Esound] or an [Epic] section in the PANEL.CFG file. This version also terminates sounds more rapidly when this is needed.

Version 2.00 includes minor changes to make it work in FS2000—except for the ADVenture sound diversion. This does not work in FS2000 and no solution has yet been found. Also, the “K” constant assignments set as defaults in the main [Triggers] section are now applied to any use of the constants which have not been re-assigned in the current panel-selected Trigger section.

Version 2.01 fixes a problem where some variables, such as ALT_FROM_BAROMETRIC_PRESSURE can crash FS2000 on loading. This is because they require FS2000 to call SIM1.SIM before it is loaded. ESOUND now waits till SIM1.SIM is loaded and linked before initialising the variables.

Version 2.10 is a formal re-release for FS2000 and FS98, and adds “SIM_SPEED” to the FS Token Variables which can be tested. This gives the simulation rate in terms of a ‘flag’ bit.

Version 2.21 fixes some errors, in particular the inability to STOP a looping sound on a Rear channel.

Version 2.25, a limited release, fixed some crash problems with certain sound Cards, introduced by the modifications in version 2.21.

Version 2.30 adds facilities to apply bit masks to FS variables (the “V” triggers”), so selecting specific bits to test, and to specify the comparison value in hexadecimal if required, to make it easier to check very specific conditions indicated by flags within a byte, word or double word..

Versions 2.31 and 2.32 support some additional FS2000-only Token Variables.

Details of Versions 2.33 to 2.50 are lost. Sorry.

Version 2.51 included the following major enhancements:

· The "V" variable facilities now take any valid offset as listed in the FSUIPC Programming document. i.e. Esound now uses FSUIPC to access values, so that anything found and listed in FSUIPC is usable in trigger programming.

· An addition "V" type "VF" is available for basing triggers on 8-byte "double" floating point values, of which quite a few are now listed in the FSUIPC Programmer’s guide.

· Esound access for playing sounds is now provided through FSUIPC-supported offsets 4200-42FF. This is fully documented in Appendix 2 at the end of this document.

Versions 2.52 to 2.534 are lost.

Version 2.535 was the first to work in FS2002. But by this time Esound was (and still is) not supported.

Version 2.54 is officially released but unsupported. The only change from 2.535 is that if it cannot read the joystick buttons through EPIC.VXD then it reads them through the standard Windows joystick API. In either case it now uses FSUIPC for this access.

Version 2.55 is exactly the same as 2.54 but made to work in FS2004 as well. For this it needs an FS2004 compatible version of FSUIPC (2.983 Beta or later: 3.00 is the first official release of FSUIPC compatible with FS2004).

Version 2.56 corrects for a difference in FSUIPC 2.98x and the released FSUIPC version 3’s. Version 2.55 of Esound was not able to access FS variables by Token Name, only by FSUIPC offset. Both work okay in this revision.

Version 2.57 fixes the initial FS version detection method so that it works correctly on the French version of FS2004 (which has no “2004” in the title bar!).

Version 2.571 corrected the correction make in 2.56 so that Token Names were again usable in FS2002 and before. The original correction made it work in FS2004 at the expense of the earlier versions. Apologies for that!

Version 2.572 fixed yet another error stopping token name access on FS!

Introduction: what is Esound?

This module grew out of an idea by cockpit builder James Price for a method of playing wave files to produce sounds, mixed in with those of FS98 itself, to make his cockpit as much like the real thing as possible. His cockpit, like many others, is based around the use of an EPIC card (by R & R Electronics), together with my own EPIC95 drivers, to provide the inputs and outputs needed from FS98. The original idea for “Esound” was to play specific wave files upon instructions to do so from the EPIC control program, written in “EPL” (Epic Programming Language). The “E” in “Esound” then stood for “EPIC” not “Extra”!

Another requirement was one of my own. I like to fly with full aircraft sounds through my amplified speakers and sub-woofer, and like to use ATC adventures, either of the ready-produced variety (such as those produced commercially), or more usually generated by a flight planning program, such as the excellent ProFlight98. The problem I found was in hearing the ATC above all the other noises without making the Adventure sound too loud and the rest too quiet. For ultimate realism I wanted to be able to split off the ATC sound and feed it to a separate speaker, or even better to a headset.

Both of these original objectives have been met in Esound, at least for FS98. But, on their own, this would have limited the module’s usefulness to those who had multiple sound systems (to split off the Adventure sound) or an EPIC card. So, additional features were added to allow any user to configure sounds to play on specified events occurring in FS98. This latter feature may actually turn out to be the most important use of Esound, and accounts for more space in this document than all the other applications put together!

Finally, facilities were also added for programmers of FS98 Gauges, or other FS98 modules—or even other programs running alongside FS98—to play sounds mixed in with the others, and optionally directed to specific speakers. This may be convenient to those many Gaugemakers who would like to add sounds to their gauges but don’t want to delve into the rather arcane world of Windows’ DirectSound.

In summary, these features are provided by Esound:

· Sounds can be triggered by the use of Joystick buttons programmed through EPIC and EPIC95 drivers, or from any joysticks through the Windows joystick API.

· Sounds can be triggered by events occurring in FS98/2000/2/4. These are completely configurable by the user, and can be selective according the the FS aircraft panel currently in use.

· Sounds can be played on request from Gauges, other FS98/2000/2/4 modules, or even other programs. The programming interface for this is described in this document.

· Sounds are mixed into those from FS98/2000/2/4.

· Sounds from FS98 ADVentures can be separated from the rest of FS98 sounds and directed just like the rest of the ‘E’ sounds. (Sorry, this doesn’t work in FS2000/2/4).

· Sounds can be directed specifically to any one of up to 8 distinct sound systems registered with Windows.

· Sounds can be positioned individually Left, Centre or Right on Stereo systems, and any one of nine prime positions on quadraphonic (4 speaker) systems.

Installing and Configuring Esound

The supplied DLL, Esound.dll, is placed into the FS98/2000/2/4 “Modules” folder. Once there, it effectively becomes part of FS and will run whenever FS is run.

On its own this accomplishes nothing. Esound will be running but not doing anything. The only advantage of this is that it will not have any measurable impact on FS’s performance, but then removing it would do better!

To make Esound do anything, it needs to be ‘configured’. This involves editing a text file called Esound.cfg, which resides in the main FS folder.

No “starter” version of Esound.cfg is supplied, since this would be different in each installation, and vary according to what you want to accomplish. However, after installing Esound.dll into the Modules folder, run FS without creating an Esound.cfg. One will be created for you, automatically.

Now, you can either close down FS and edit Esound.cfg, or leave FS running whilst you edit the file and experiment with sounds. This is a special feature of Esound: the configuration can be changed whilst it is running. When it reads the file, it clears the “Archive” bit associated with it. After you edit it and save it, the Archive bit will be set again. Esound.dll checks for this every few seconds (not enough to slow FS down, but not so long that you get fed up waiting for the new settings to take effect).

The rest of this document explains the settings which can be made in Esound.cfg, and what they mean.

Devices

When you ran FS98/2000/2/4 and Esound with no Esound.cfg file it generated a basic CFG file which still does nothing, but at least contains a list of your sound devices with their “proper names”—the names used internally by DirectSound and needed to select them in Esound. Trying to determine the correct names without this help is not easy—that’s why Esound fills this part in for you.

For most systems, with just a single sound card, there’ll be no problem not knowing the sound system’s name in any case. Esound will use the default sound system, the only one there, for everything in any case.

On my system, in order to experiment with DirectSound and develop this package, I have three distinct sound systems, all installed and running under Windows together. The device section of Esound.cfg for this system looks like this:

[Devices]

1=Primary Sound Driver

2=SoundBlaster 16 Direct Sound Driver [220]

3=DirectSound (SB Live! Wave Out [E800])

4=Microsoft Digital Sound System 80

These names are supplied by Windows, not entered by myself, and presumably derive from the drivers installed at the time the sound device was installed. My three devices are an ISA SoundBlaster 16 (stereo—two speakers fitted), a PCI SB Live! Value (quadraphonic—four speakers fitted), and the USB connected Microsoft Digital Sound System (also stereo with two speakers). There are some sub-woofers about too, but these don’t really enter the equation as they aren’t specifically selectable.

Notice that Windows has listed four devices, not just the three I have. I presume this is for backward compatibility, as the “Primary Sound Driver” actually refers to the ‘default’ device: the one selected in Control Panel—Multimedia to be the one used by Windows and all programs which don’t specifically select for themselves. FS is one of these: it uses the ‘default’ device.

In Esound, the devices are referred to by number, with 0 assigned to mean simply “the default” sound device, and the others numbered 1 to 8, in the order listed to Esound by Windows. In this case, since the first device listed is “Primary Sound Driver” and this is also the “default”, devices 0 and 1 are really the same: and will actually be set, via the “Multimedia” Control Panel applet, to one of the other three. Which one is not determined by Esound, and it doesn’t matter in any case. It is sufficient that you can either select a device specifically (2, 3 or 4 above), or select the default (0, or 1 here also) which can be changed in Multimedia.

Settings

The [Settings] section of Esound.cfg is optional. If you want all sound controlled by Esound to go to the default sound system, centred (i.e. equal volume left and right), and unattenuated (i.e. “full volume” as recorded in the WAVe file), then you don’t need a [Settings] section.

Up to 64 separate settings can be listed here, defining which device, volume, and position is to be used, whenever that setting is referred to. The format is:

N = D, V, P

where spacing is unimportant, and

N
is the setting number (1–64), for reference later

D
is the device number, (0 for default, else 1–8 to select from [Devices])

V
is the volume: 100 is ‘normal’ or ‘full’, and 0 is about 25dB quieter

P
is the position: omit for front centre, or else one of:

L, C, R or FL, FC, FR for the three stereo front positions supported

RL, RC, RR for the three rear positions supported

CL, CC, CR for central positions (i.e. front and rear equalised)

Note that the ‘normal’ or ‘full’ volume is simply the actual Wave volume, with no attenuation. It is not possible to actually amplify through DirectSound.

The stereo and quadraphonic positioning is dependent upon the appropriate support in the devices and their drivers. Selection of non-existent positions will merely “collapse” that sound position to the nearest available. In my list of devices only the SB Live! supports 4 speaker positions.

As well as the 64 possible normal Settings, there are two special ones:

ADV = D, V, P

and
MOD = D, V, P

The “ADV” entry tells Esound to intercept FS98 ADVenture sound, and to re-direct it according to the three parameters. Without an “ADV” entry, the ADVenture sound is left to FS98’s own sound routines. If ADVenture sound is redirected, the Esound volume control takes the place of FS98’s own adventure sound volume control, which becomes ineffective. [This feature does not work with FS2000/2/4].

The “MOD” entry tells Esound what to do with any requests from Gauges, other FS modules, or external programs, which aren’t explicitly listed in the “Triggers” section (later). If the MOD entry is omitted, and unlisted requests arrive to play specific sounds, these are directed to the normal default (i.e front centre on the default device).

Sounds

The [Sounds] section lists the Wave names to be used. These are listed in the form:

N = WaveFilename

where N ranges from 1–256 (ask if you need more sounds), and the Wave filename can be a complete filename (with the “.wav” part) or simply the main name part (Esound will assume the “.wav” part), and may include a path or not, as desired.

By default Esound assumes all Wave files are situated in FS’s Sound folder. If you want to keep Esound’s wave files separate, I’d recommend making one or more sub-folders within the main Sound folder. Then you specify the wave files by, for example:

1 = Esound\SpecialClick1

for a subfolder named “Esound” and a Wave file named SpecialClick1.wav.

Esound assumes that any path you specify is a sub-path from the default (in this case FS’s Sound folder) unless you give a full path—one which includes the drive letter, for example:

2 = C:\Program Files\Creative\Launcher\Plugins\SBLive

If most or all of the sounds are in a specific folder other than FS’s default Sound folder, you can tell Esound to assume a different default. This is done by including the line:

Path = soundpath

in the [Sounds] section. Again, the ‘soundpath’ given here can be a complete path (including driver letter), or merely a sub-path from the original default. So, if this were given:

Path = Esound

then the “new” default sound path assumed for all Esound Wave files would be the Esound sub-folder within FS’s Sound folder.

Please note that none of this path manipulation affects where ADVenture sounds come from—they come from the same place they did before you started using Esound—not where externally-specified sounds come from. The path specification only applies to Sounds listed explicitly in the [Sounds] section of Esound.cfg.

Performance

Esound is designed to co-operate with FS without noticeably detracting from its performance. However, if it is asked to scan for many events (triggers, see next section), then it is possible that some degradation may become noticeable.

To allow tuning of Esound’s performance to suit specific needs, the rate at which it scans for the two main types of event can be modified. This is done is a section in the Esound.cfg file called [Polling].

The [Polling] section contains only two parameters: one to set the polling rate for Epic ‘button’ changes, and the other to set the polling rate for FS variable changes:

[Polling]

Epic = 10

Var = 5

These values here show the default in the current version of Esound: Epic (or any joystick) button changes are checked 10 times every second, whilst FSUIPC variable changes are checked 5 times every second. (Note that in Version 1.11 of Esound, the Epic checking was actually reduced to less than 3 times per second, which is why some folks had to increase EPIC “Delay(n)” values to suit).

The range which can be set for either value is 0–20. The value 0 disables the poll altogether. Esound can only abide by these poll rates approximately, as the processing time it gets also depends on many other things.

If Esound is being used without an Epic board and EPIC.VXD, the Epic polling rate is aplied to the joystick polling for buttons.

Triggers

The [Triggers] section is where most of the “clever” stuff is. This and relasted sections list all the events which should cause a sound (up to a maximum of 256 of them), and specifies what those sounds are (by pointing to an entry in the “Sounds” list) and where they should go (by pointing to an entry in the “Setting” list, above).

The only sounds handled by Esound which don’t need a “trigger” listing here are those for ADVentures, which only need the ADV setting above, and externally requested sounds, which can optionally be listed here (when they are known and require specific routing) but which more usually are simply all funnelled through the MOD setting entry.

There are several types of trigger, but the entries for them all follow the same basic format:

N = C, W, S

where spacing is unimportant, and:

N
is the trigger number (1–256), only used to ‘count’ them.

C
is the Condition under which this trigger operates

W
is the sound (Wave) number, as listed in the [Sounds] section

S
is the [Setting] to be used (omit, or 0 , for default device and position)

The trigger numbers have no specific meaning, other than to distinguish all the triggers and to count them. Esound currently handles up to 256 trigger entries (ask if you need more!). For efficient operation it is best if you start numbering at 1 and increment from there with no gaps, but Esound will handle any triggers with unique numbers in the range 1–256.

The various “conditions” are dealt with at length later. Those which can be used are:

· Buttons: EPIC or joystick button changes. Individual buttons changing from off to on, on to off, or either, can act as triggers. EPIC95 supports 512 buttons (32 each on 16 joystick entries, the maximum supported by Game Controllers). They are numbered 0–511. The same number of buttons can theoretically be supported through the standard Windows joystick interface, but you’ll probably need a USB EPIC to get all 512 without the EPIC.VXD support.

· Modules: specific external requests programmed into Gauges, Modules (DLLs) or external programs. The programming interface is described in this document.

· FS state Variables: bytes, words and double words from FSUIPC’s table can be examined. Multiple variable tests can be combined. This method is only suited to those who know the uses of the various state values in FS98/2000/2/4, and no additional reference data is available in this document for these. (See the FSUIPC SDK Programmer’s Guide).

· FS tokenised variables: these are the variables access through names (tokens), as defined and listed in Microsoft’s FS SDK package for Gauge writers. For convenience, these are converted to useful units (where known) by Esound, and referenced directly by name. Conditions involving these can be combined. A list of all the tokens supported by Esound, and the units used (where known), is given as an Appendix to this document. Many of these also work in FS2000 or even FS2002/4, but some (most notably most of the ENGINEx_ ones) do not return a value, or return an incorrect (i.e. different) value.

The sound number is 1–256 and directly refers to a line in the [Sounds] section. It can be set to zero (or simply omitted) only in the case of externally-specified sounds, where the wave file is specified in the request (i.e. in the “Modules” condition (Mn) described below).

The Setting number can be omitted for default device and position selection, or set to 1–64 to select the line, listed in [Settings], to be used.

Looping sounds
If a sound is to be “looped”—i.e. continuously restarted whenever it finishes—add the word “LOOP” at the end of the line, after another comma: i.e. “N = C, W, S, LOOP”. If looped sounds are used, you will normally need another Trigger action to stop them. Stopping a looped sound is done with a special Trigger format:

N = C, STOPn

where C is the condition (as usual), and the number ‘n’ in “STOPn” is the starting Trigger number, NOT the Sound number. This is necessary since the same sound might be played by other triggers without looping. The “trigger number” here is the reference number at the beginning of the line defining the LOOP trigger.

The special setting “STOP0” stops all Looping sounds currently under way (actually only those started in the same Trigger section: more about separate Trigger sections later on!).

Note that if the same trigger has been used several times to start the looped sound (perfectly okay), then the one which is stopped is not specifically pre-determined (though it is likely to be the most recently started one). The same number of STOPn’s as Loop starters would be needed unless “STOP0” is used.

Okay. Now for the technical stuff. For ordinary, non-Programming, non-Expert FS users, the best thing to do now is skip several sections now, down to the one about ‘Tokens’. That part is easy! Honest!

B: Button triggers

Joystick buttons provided through the Windows joystick interface either directly (as in the case of the USB EPIC), by the EPIC95 driver (EPIC.VXD) are numbered 0–511, with 32 buttons available on each of the maximum of 16 joysticks.

Esound accepts triggering of sounds on any of these buttons changing from Off to On, On to Off, or either change. The [Triggers] specification for this takes the form:

N = Bn:c, W, S

where N is the Trigger number (1–256) as usual, Bn specifies the Button number, so for instance B133 is “button 133”, and the ‘c’ indicates the change to be detected, as follows:

0 = Off to On

1 = On to Off

2 = Either of ‘Off to On’, or ‘On to Off’

If c=0 (i.e. the normal case of Off to On) the ‘:c’ part can be omitted, making the Condition simply ‘Bn’.

As explained already, W is the sound (Wave) number, from the [Sounds] section, and S is the [Settings] number.

Note that the Esound module is scanning the buttons at intervals. If buttons change from off to on to off again (or vice versa) too quickly, the transitions may be missed. This is unlikely if the buttons are actually driven by real physical button presses, but if the sound is simply being programmed in an EPIC from some other stimulus, then the timing of the sequence must be considered.

For EPIC users, in general, using an “Enque16(BtnPulse,n)” command to ‘pulse’ the button will not work! Instead, for real button operation use “BtnOn” when the button is pressed, and “BtnOff” when it is released. For programmed button operation use a sequence such as:

Enque16(BtnOn,n)

Delay(10)

Enque16(BtnOff,n)

Such an intervening delay should give reasonable results, but increase the delay value if this isn’t consistent enough.

M: Module triggers (i.e. from external programming)
 [for programmers only!]
Esound provides two interfaces for programmers to use to trigger sounds. The first is by Sending or Posting a Windows message, and can be used by FS gauges, DLLs (modules) and external programs alike. Here is the C programming sequence needed for this interface (include the supplied PlayEx.h C header file in your source):

1. Get FS's main Window Handle by:

HWND hwndFS = FindWindowEx(NULL, NULL, "FS98MAIN", NULL);

(oddly enough, the same in FS20002/4), or MS combat FS by

HWND hwndFS = FindWindowEx(NULL, NULL, "MSCFSMAIN", NULL);

2. Then get Esound's window handle:

HWND hwndES = FindWindowEx(hwndFS, NULL, "FS98esound", NULL);

3. To play a sound:

if (hwndES) PostMessage(hwndES, WM_PLAYEX, n, (LPARAM) pszsound);

where “n” is a specific identification reference, if required, or zero, and “pszsound” points to a zero-terminated string which gives the Wave filename. The latter can be ‘NULL’ if the wave file is to be selected in the Esound CFG file via an entry in the [Triggers] section.

SendMessage can be used in place of PostMessage if you need confirmation. A zero return indicates failure to play. A non-zero return means the sound has been successfully started. No notification of the end of the sound is provided (please let me know if this is needed at all).

In the Esound.cfg file’s [Triggers] section, external, or “Module” sounds can be listed by:

N = Mn, W, S

where ‘n’ is the reference as given in the PostMessage (or SendMessage) above, and ‘W’ and ‘S’ give the sound and settings references as usual. If the wave file is specified in the call, the sound reference here is ignored.

Sounds specified by these external calls are either specified with a full pathname (including the drive letter and colon), or are to be found in the main FS sound folder, or a specified sub-folder from this. The default Esound path, possibly changed by a “Path=” statement in the [Sounds] section of the CFG file, is only used if the reference to the wave file is NULL.

There’s a slightly more complex method, which uses the “PLAYEX” structure defined in PlayEx.h, but provides additional facilities. For example:

static PLAYEX play;
// MUST be static, not dynamic,

// since ESOUND will write to it!

play.pszWave = "wavename";

play.dwFlags = 0L; // Set ESOUND_LOOP for looped sound

PostMessage(hwndES, WM_PLAYEX2, n, (LPARAM) &play);

The options for looping and the flags returned are described below, and in PlayEx.h..

The other method of causing Esound to emit sounds from an external program only applies to other FS modules and Gauges. It relies on the FS DLL linkage system. It is more efficient, but a little more complex to understand. Here is the programming required to use this:

1. Add an import table entry for module 0x00000101. (This is Esound’s “id”).

2. Supposing this is named "EsoundEntry" (for example), obtain the "PlaySound" procedure address by:

if (ImportTable.EsoundEntry.fnptr)

{
BOOL (FSAPI *PlaySound)(int, char *) =

*((PVOID *) ImportTable.EsoundEntry.fnptr + 7);

3. Now, whenever a sound is to be played:

if (PlaySound) result = PlaySound(n, pszsound);

The result of this call is FALSE if the sound wasn’t started, TRUE if it was. No notification is provided of the sound finishing in this method. Use the slightly more complex method described next for this and other options.

As before, n gives the Module reference for the [Triggers] section in "Esound.cfg", so the sound can be specifically directed by "Mn" entries. Set this to 0 if the default is to be used. If a specific 'n' value is given the sound name string can be omitted (pointer set to NULL). The sound to be used is then selected in the Esound.cfg file instead.

As with the first calling method, the sound name can include a full path (with drive). Otherwise it is assumed to refer to a file in the FS sound folder, or in a sub-folder from there.

With all “Module” sound requests, default direction of the sound can be specified in the Esound.cfg file via the “MOD =” [Settings] entry, already described.

The direct call equivalent of the “WM_PLAYEX2” method described earlier is similar, but uses a different entry point and main parameter, thus:

if (ImportTable.esoundentry.fnptr)

{
BOOL (FSAPI *PlaySound2)(int, char *) =

*((PVOID *) ImportTable.esoundentry.fnptr + 8);

...

if (PlaySound2)

{
static PLAYEX play;
// MUST be static, not dynamic,

// since ESOUND will write to it!

play.pszWave = "wavename";

play.dwFlags = 0L; // ESOUND_LOOP for looped sound

result = PlaySound(n, &play);

// Result is FALSE if this fails, TRUE if ok.

“play.dwFlags” has ESOUND_PLAY set whilst the sound is playing, ESOUND_END when it stops. The PLAYEX structure is then free for re-use. For a Looped sound, stop it later by a call with dwFlags set with ESOUND_STOP. The SAME PLAYEX structure must be provided in this call, as it is this pointer value which identifies which sound to stop.

V Triggers (FSUIPC variables) [for FS experts only!]

Esound provides direct access to FSUIPC’s variables. This method is actually more efficient than the easier user-oriented system described next. FS state variables are accessed by specifying the length of the value being checked (one Byte, or ‘B’, one 16-bit Word, or ‘W’, or a 32-bit double word, or ‘L’ for “long”, ‘F’ for 64-bit “double” floating point), and the address of the variable in the FS state data, given in hexadecimal.

Parts of the value can be extracted by specifying a mask in hexadecimal.

The value can be compared with a decimal constant, or an hexadecimal constant. The valid formats of the whole [Triggers] entry are:

N = VSxxxx = n, W, S

no mask, value decimal

N = VSxxxx.mmmm = Xvvvv, W, S
mask and value in hexadecimal

Or combinations of these, i.e. hexadecimal value with no mask, or a mask but decimal value.

In these formats spacing is ignored between the parts but not within.
‘S’ is a ‘B’, ‘W’, ‘L’, or ‘F’ indicating Byte, Word, Long or Floating point double, for the Size of the variable;

‘xxxx’ is the hexadecimal address (i.e. FS global offset);

‘n’ is the decimal constant it is being compared with—or ‘Xvvvv’ provides the hexadecimal value instead;

‘mmmm’ is a mask, in hex. This may be a byte, a word or a long word, as appropriate (i.e. 2, 4 or 8 digits long).

The condition shown here for the trigger is ‘equal’ (=), but it can be any one of:

=
equal
!=
not equal
<
less than
>
greater than
<=
less than or equal
>=
greater than or equal

The comparison is done assuming both values are unsigned integer values. If a negative value for the constant ‘n’ is provided, its binary representation is treated as an unsigned value. Also, the value given is truncated to the length specified (byte, word, or long). So, for example, –1 would be treated as 0xFF (255) in a Byte comparison, 0xFFFF (65535) in a Word comparison, or 0xFFFFFFFF in a Long comparison.

Compound tests can be specified simply by chaining each condition to the next by the ‘&’ character, meaning logical ‘AND’. (No ‘OR’ facility is provided: it is unnecessary, as you can list alternatives as other Trigger entries in the CFG file).

So, as a (pretty meaningless) example:

1 = VB0238 > 10 & VB0238 < 11, 5, 1

says that sound 5 should be played with setting 1 whenever the Byte value in FS state variable 0x0238 is between 10 and 11. Byte value 0x238 is the local hour, so the sound would be played immediately after 10 am. The ‘end’ condition of 11 am is actually meaningless excepting that time can be reversed in FS. If the time elapsed till after 11 am, but was then reset (e.g. by reloading an FS situation) to, say, 10:30 am, then the sound would trigger again.

This illustrates a fundamental point of Esound triggering: it is not the condition as such which triggers the sound, but the condition becoming true.

Another example, showing more of the features:

2 = VW0504.00F0 = X0070, 6, 3

says that sound 6 should be played with setting 3 whenever the 4 bits in the 0x00F0 position (i.e. 2^8–2^11) change to the value 7 (or 0x0070 for the whole word with those bits isolated). This particular example in the real world would actually apply to the case where the ALT section in Enrico Schiratti’s PFD annunciator changes to indicate the “TO/GA” mode.

Token triggers (Many assorted FS values) [for everyone!]

This is probably the most useful part of Esound. It provides access to the same set of tokenised variables (inside values in FS) as provided to writers of panel GAUges, and it does so using the very names for these values assigned by Microsoft in the gauge-writing toolkit.

But don’t worry. This is not gauge programming. All the token names are listed in the Appendix. Most of these are hopefully self-explanatory (there are some notes to help), but even when they are not so obvious, why not just experiment? You can’t do any damage! Add a few triggers with some sounds you will instantly recognise (record them yourself if you like), and experiment with various tokens to find out how the FS values behave. You can have fun and still develop those nice finishing touches to your cockpit! Don’t forget, you can change Esound.cfg whilst FS is running. Esound.dll will pick up the changed parameters in a few seconds, so the experiments can proceed apace!

The format of a trigger specification involving a ‘token’ is as follows:

N = tokenname = value, W, S

where N is the Trigger entry number (of no consequence except distinction), “tokenname” is the name of one of the supported FS variables—as listed in the Appendix (and take care: spelling MUST be exact), ‘value’ is a decimal constant value the variable is being compared with, and W and S as usual give the [Sounds] reference and (optional) [Settings] reference.

The condition shown here for the trigger is ‘equal’ (=), but it can be any one of:

=
equal
!=
not equal
<
less than
>
greater than
<=
less than or equal
>=
greater than or equal

Now, take care: most (but not quite all) FS tokenised variables are provided in floating point form. This means they can have a fractional part. The table Appended shows the very few which are ‘Integers’ instead. Even those values which can only really be ‘TRUE’ or ‘FALSE’ (such as AUTOPILOT_ACTIVE) are indicated by a floating point value such as 1.0 for ‘TRUE’ and 0.0 for ‘FALSE’.

So, the constant value you supply for the comparison is also normally a ‘floating point’ value. Only those variables marked explicitly ‘Integer’ cannot compare a fractional part (and if one is supplied in such a case, it is simply discarded).

Floating point values don’t compare terribly well. They are rarely exactly any specified value, so comparisons often unexpectedly fail. To get around this, Esound operates the comparisons to a ‘precision’. The ‘precision’ is implied in the way the constant value is provided, as follows:

1.00 is 1 to at least the 1/100th, i.e. the 2nd decimal place. 0.999 is equal to 1.00 but 0.99 is not. 1.01 is not equal to 1.00 but 1.009 is.

1 is only 1 to the integer: 0.99 is less than 1, but 1.99 is equal to it!

A practical example of this is given a little further down.

Compound tests can be specified simply by chaining each condition to the next by the ‘&’ character, meaning logical ‘AND’. (No ‘OR’ facility is provided: it is unnecessary, as you can list alternatives as other Trigger entries in the CFG file).

This is a practical example. The MACH token refers to the Mach speed of the aircraft at the time. It is a value normally expressed with two decimal fractional places, in the range 0.00 to 2.15 (at least, I think the latter is the maximum simulated in FS98: any other bids?).

2 = MACH > 0.80 & MACH <= 0.84, 6, 2

plays [Sounds] number 6 using [Settings] number 2 when the Mach speed goes from below or equal 0.80 to above, or from above 0.84 to below or equal.

Note that this also illustrates a fundamental point of Esound triggering: it is not the condition as such which triggers the sound, but the condition becoming true.

On the point about precision. If the above line had been entered as:

2 = MACH > 0.8 & MACH <= 0.84, 6, 2

then the sound would never trigger, as the first condition, “> 0.8” requires the MACH variable to be above 0.8 to that precision. Only values of 0.90000000.. and above meet this criteria, but they cannot also be <= 0.84. so the condition can never be true!

As a much more practical and extended set of examples, and some particularly good uses of Esound, check this long example of [Sounds] assignment and [Triggers] specification:

[Sounds]

; Sounds for altitude calls on descent:

1=10ft

2=20ft

3=30ft

4=40ft

5=50ft

6=100ft

7=200ft

8=300ft

9=400ft

10=500ft

; Sounds for speed calls on take-off

11=80knots

12=90knots

13=100knots

14=110knots

15=120knots

16=130knots

17=140knots

18=150knots

19=160knots

; Sound to welcome folks to Manchester International Airport!

20=ManchesterWelcome

[Triggers]

; Altitude calls on descent

; NOTE that calls are triggered 10 feet early, to allow for delay is getting the sound

; out. This is much like the co-pilot anticipating the needle

1=ALTITUDE_ABOVE_GROUND<=510, 10,1

2=ALTITUDE_ABOVE_GROUND<=410, 9,1

3=ALTITUDE_ABOVE_GROUND<=310, 8,1

4=ALTITUDE_ABOVE_GROUND<=210, 7,1

5=ALTITUDE_ABOVE_GROUND<=110, 6,1

6=ALTITUDE_ABOVE_GROUND<=60, 5,1

7=ALTITUDE_ABOVE_GROUND<=50, 4,1

8=ALTITUDE_ABOVE_GROUND<=40, 3,1

9=ALTITUDE_ABOVE_GROUND<=30, 2,1

10=ALTITUDE_ABOVE_GROUND<=20, 1,1

; Speed calls on take-off

; NOTE that calls are triggered 2 knots early to allow for delay in getting the sound

; out. This is much like the co-pilot anticipating the needle

11=AIRSPEED>= 78, 11,1

12=AIRSPEED>= 88, 12,1

13=AIRSPEED>= 98, 13,1

14=AIRSPEED>= 108, 14,1

15=AIRSPEED>= 118, 15,1

16= AIRSPEED>= 128, 16,1

17= AIRSPEED>= 138, 17,1

18= AIRSPEED>= 148, 18,1

19= AIRSPEED>= 158, 19,1

; Check for within vicinity of Manchester International (UK)

20=PLANE_LATITUDE > 53.33 & PLANE_LATITUDE < 53.37 &
PLANE_LONGITUDE > –2.30 & PLANE_LONGITUDE < –2.25, 20,1

This extended example shows a few new, but practical, aspects of Esound.

First, there is a slight lag between a variable meeting a specified condition and the sound actually getting started. This is inevitable. Esound is only scanning the values at intervals (about 5 times a second for tokens). This is limited deliberately to avoid degrading FS performance too much. Once the condition is found to be true, the WAVe file has to be loaded and possibly converted to a form which DirectSound understands. Then it can be started. This all takes time, typically a fraction of a second, but enough for altitude and speed calls to occur rather late. So, anticipation is the key here, much as it would be for a ‘real’ co-pilot.

The last part of the example shows a very specific use of multiple conditions. To determine whether the aircraft was entering the area of the World occupied specifically by the UK’s Manchester International airport (before the new Runway makes it slightly bigger!) four Token comparisons are needed—two to check the Latitude is within range, and two to check the Longitude. For these two the precision is only important if it needs to be: both Latitude and Longitude variables are provided in decimal: the fractional part is a fraction of a degree, so you need to convert “degrees minutes seconds” to decimal degrees.

Finally, please note that with multiple conditions it is more efficient to enter the least likely condition first. Otherwise Esound will waste time, 5 times every second, evaluating likely conditions, only to find an unlikely one FALSE later on. Take care!

Learning more about FS token variables

The Appendix lists the variables which can be tested by Esound triggers, but it doesn’t explain much about them. Really, the only way to determine what many of them are doing, and what values to expect from them, is to run FS whilst flying, etc, and actually observe what the variables are doing. But how is this possible?

EPICINFO.DLL, no longer included in this package, is an FS98/2000/2/4 module which was originally written for EPIC users to allow FS values to be send through the EPIC to real displays and gauges on home-built cockpits or even some commercial units.

Part of EPICINFO’s capabilities is to allow specific selection of those FS variables to be sent. It uses the same variable names as ESOUND, and all those accessible in ESOUND are also accessible in EPICINFO (although they are not all listed in the EPICINFO documentation, as this only lists those actually sent to EPIC). The most useful facility in EPICINFO in the current context, is the one whereby EPICINFO can log all the changes to the selected variables to a file, whilst you are flying!

So, here are the steps to using EPICINFO to determine the behaviour of some particular FS values. As an example we’ll take:

FLAPS_HANDLE_POS, FLAPS_POS_LEFT, and FLAPS_POS_RIGHT.

First, dowload the latest version of EPICINFO.DLL and copy it to your FS Modules folder.

EPICINFO is controlled by a file which you must now create and insert into the main FS folder. This file is always called EPICINFO.CFG. For this example this is what it should contain:

[Default]

Sets=None

Log=1

FLAPS_HANDLE_POS=1

FLAPS_POS_LEFT=1

FLAPS_POS_RIGHT=1

The [Default] line merely tells the module to use these parameters in the absence of other selections—we’ll see later how to use parameters in FS PANEL.CFG files to select different sections in the CFG file and, more usefully, to select different sets of ESOUND Triggers!

The “Sets=None” line merely switches off all the default stuff provided by EPICINFO, not required just to look at one or two specific variables. “Log=1” enables the logging. All this will go to a file called “EPICINFO.LOG” in this case. The log file is always named after the section and gauge name, so separate log files can be produced for different panels by using different gauge names. The variables to be logged are then simple listed, “=1” enables them, “=0” disables them.

The log is accessible with any suitable text viewer, or after closing FS98. It will show the values as they change, in both original form (up to 64-bit, or 8 byte, hexadecimal, often representing a value in “double” floating point format) and in decimal assuming the format was indeed, floating point (as most, but not all, are).

Multiple Trigger sections: conditional triggers

So far we’ve only discussed the actions in a single Trigger section of the ESOUND.CFG file. However, facilities are provided for conditional trigger sections, and even sections which are automatically selected when specific FS panels are loaded.

Conditional trigger sections

Up to 31 named Trigger sections can be used. The names are limited to 31 characters. Named trigger sections are the same as the main one but headed:

[Triggers.name]

None are active initially. In order to ensure that Esound can find these conditional sections, the names should be listed in another section of the Esound.cfg file called [SwitchedTriggers]. For example:

[SwitchedTriggers]

1=OnGround

2=InAir

lists just two conditional trigger sections which will be headed [Triggers.OnGround] and [Triggers.InAir]. The numbers used in the [SwitchedTriggers] section aren’t relevant except to enumerate the entries, but the range is restricted to 1–31. Trigger sections selected in triggers within the main [Triggers] section don’t actually have to be listed in the [SwitchedTriggers] section, as they will be detected on the initial scan of that section, but it is advisable to list them all in any case, for consistency.

Activate and de-activate conditional trigger sections by the following trigger facilities:

n=condition,[name]

to switch to [Triggers.name], disabling the current section(s) (including the default)

n=condition,[+name]

to enable [Triggers.name] as well as all currently enabled sections

n=condition,[–name]

to disable [Triggers.name] only (ignored if it isn't currently enabled).

n=condition,[]

to return to the default section (i.e. [Triggers]), disabling all currently enabled conditional ones.

Each section can contain numbered conditions, exactly as the main one. The numbering is separate, 1–256 in each. However, there's an overall UPPER limit of 1024 distinct trigger entries.

This conditional trigger facility is useful for such items as GPWS, where it can be enabled or disabled. The switch controlling the GPWS would operate the [+name] and [–name] actions, with the named Trigger section actually containing al the audible warnings. Similar tricks can be used for supporting different sets of sounds whilst on the ground as opposed to in the air, using the “AIRCRAFT_ON_GROUND” variable.

Panel-related trigger sections
Trigger sections enabled by panels need a small modification to the panel definition itself. For each panel with which you wish to associate special sounds, simply add a new section to the end of the PANEL.CFG file (in the panel subfolder) as follows:

[Esound]

Ref = <name>

Where <name> is any suitable name, for example “MD83PANEL1”. Note that if you are using EPICINFO.DLL as well, and have added [Epic] sections to your panels, you can use the same ‘Ref’ name for both. If both sections are present, the [Esound] reference is the one used by ESOUND, the [Epic] one is then only used by EPICINFO.

Now, when the panel is loaded, ESOUND will automatically use this name (MD83PANEL1 in this case) to select a specific Trigger section, in this case named [Triggers.MD83PANEL1]. Any previous panel-selected trigger section is disabled at the same time.

That’s it! The triggers listed in panel-selected sections are not loaded from the ESOUND.CFG file until the panel is loaded. Only one such section is active at any time. There’s a limit of 256 triggers, as usual, and the maximum of 1024 triggers in total applies, but only counting one of the panel-related ones at a time.

This mechanism is separate from the conditional triggers discussed above, and the panel-related trigger sections should not be listed in the [SwitchedTriggers] section. The default [Triggers] section remains the default and is still enabled unless specifically disabled by switching to a conditional section as described in the previous section.

When such a Panel change is made the Esound configuration is reset, and the CFG file is re-read. So, all conditional sections will be de-selected, and any looping sounds stopped. This should make it easier to apply panel-related sounds.

Assigning and using numeric values

Once you are using panel-related Triggers, another facility in ESOUND becomes useful. Up to 99 numeric values can be assigned to “constants” in any such section. These are named K1 to K99, and values are assigned as follows:

Kn = value

The values are referenced in conditions by using ‘Kn’ in place of the value. They can be used in any tokenised variable condition. The ‘precision’ is predefined by the way the constant is assigned, so “K43=1.4900” is precise to 1/10000th, whilst “K43=1.49” is only precise to 1/100th.

Default values for constants used can be defined in the main [Triggers] section, but these are only set when the CFG file is first read from disk, or when a Panel-related set of triggers is read which does not redefine the values.

There is no point in assigning different values in normal conditional Trigger sections, as these too will actually be assigned when the file is read. Only the panel-related Trigger sections are loaded subsequently, so it is in those and those only that you will assign different values to override the defaults.

An example of the use of these is assigning V1/Vr/V2 speeds for call outs (although these should also be related to gross weight and other conditions), fuel quantities for fuel warnings (dependent upon tank capacities and typical fuel flow rates), and so on. Call outs for flap settings would also need to be aircraft/panel dependent (see the example earlier for obtaining information on the FLAPS_ variables in FS98).

Appendix 1: List of supported FS tokens (variable names)

Note: all values listed are in “floating point” form (i.e decimal units and fractions) except for a very few described as “INTEGER” values. In Esound conditions, comparisons with floating point values are performed to the precision implied by the constant value provided. Comparisons with integer values discard any fractions which may be provided, and both values are treated as if unsigned.

This table was derived from and applies to FS98. Many will also work in FS2000, but some certainly do not—in particular most of the ENGINEn_ variables are not supplied in FS2000 except when using aircraft transposed from FS98.

ADF_CARD_RADIAL

ADF_IDENTITY

ADF_MORSE_IDENT

ADF_NEEDLE

ADF_SIGNAL_STRENGTH

AILERON_POS
Aileron Position
–16384 = full left ?

AIRCRAFT_ON_GROUND
NZ = aircraft is on the ground

AIRSPEED
knots

AIRSPEED_TRUE_CALIBRATE

ALT_FROM_BAROMETRIC_PRESSURE

ALTITUDE_ABOVE_GROUND
feet (derived by Esound from PLANE_ and GROUND_ ALTITUDE)

AMBIENT_PRES_MBAR
1013.2 mb = 29.92 in Hg

AMBIENT_TEMP_DEGREES_C

AMBIENT_WIND_DIR
current wind direction

AMBIENT_WIND_VEL
current wind velocity (knots)

AMBIENT_WINDA
alt wind component i.f m/sec units

AMBIENT_WINDE
east wind component i.f m/sec units

AMBIENT_WINDN
north wind component i.f m/sec units

ANGLE_OF_ATTACK_INDICATOR

ATTITUDE_INDICATOR_BANK_DEGREES

ATTITUDE_INDICATOR_PITCH_DEGREES

AUTOPILOT_ACTIVE
autopilot master on/off

AUTOPILOT_AIRSPEED_HOLD
airspeed hold

AUTOPILOT_AIRSPEED_HOLD_VAR
airspeed hold var

AUTOPILOT_ALTITUDE_LOCK
altitude lock on/off

AUTOPILOT_ALTITUDE_LOCK_VAR
altitude lock altitude in appropriate units

AUTOPILOT_APROACH_HOLD
approach hold

AUTOPILOT_ATTITUDE_HOLD
attitude hold

AUTOPILOT_AUTO_THROTTLE_ARM

AUTOPILOT_BACKCOURSE_HOLD
back course hold

AUTOPILOT_GLIDESLOPE_HOLD
glideslope hold

AUTOPILOT_HEADING_LOCK
heading lock on/off

AUTOPILOT_HEADING_LOCK_DIR
heading lock direction

AUTOPILOT_MACH_HOLD
airspeed hold

AUTOPILOT_MACH_HOLD_VAR
airspeed hold var

AUTOPILOT_NAV1_LOCK
NAV1 lock on/off

AUTOPILOT_TAKEOFF_POWER_ACTIVE

AUTOPILOT_VERTICAL_HOLD
vertical hold

AUTOPILOT_VERTICAL_HOLD_VAR
vertical speed hold var in appropriate units

AUTOPILOT_WING_LEVELER
wing leveller on/off

AUTOPILOT_YAW_DAMPER
yaw damper

BARBER_POLE_ASPD
Movable Red-line airspeed (knots)

BAROMETRIC_PRESSURE

BRAKE_IND
0 = off, 16384 = full brakes

BRAKES_LEFT_POS

BRAKES_RIGHT_POS
0 = off, 32768 = full brakes

CHARGING_AMPS
charging system amps

CLOCK_HOUR
local clock time, hours 0–23

CLOCK_MINUTE
local clock time, minutes 0–59

CLOCK_SECOND
local clock time, seconds 0–59

CONCORDE_NOSE_ANGLE
FS2K ONLY: degrees; 0=up

CONCORDE_VISOR_NOSE_HANDLE
FS2K ONLY: 0 - Visor Up, Nose Up, 1 – Visor Dn, Nose Up, 2 - Visor Dn, Nose 5 deg, 3 – Visor Dn, Nose 12.5 deg

CONCORDE_VISOR_POS_PCT
FS2K ONLY: 0=Up – 100=Extended/Down

CROSS_FEED_SELECTOR
INTEGER value: 0 = off, 1 = LtoR, 2 = RtoL

DELTA_HEADING_RATE

DECISION_HEIGHT
FS2K ONLY: feet.

DME1_DISTANCE
DME1 distance readout

DME1_MORSE_IDENT

DME1_SPEED
DME1 speed readout

DME2_DISTANCE
DME2 distance readout

DME2_MORSE_IDENT

DME2_SPEED
DME2 speed readout

ELEVATOR_POS
Elevator Position
–16384 = down full

ELEVATOR_TRIM_IND
elevator trim position
–16384 = full nose down

ELEVATOR_TRIM_POS
elevator trim position
–16384 = full nose down

ENGINE1_ANTI_ICE_SWITCH

ENGINE1_CHT

ENGINE1_COMBUSTION

ENGINE1_EGT

ENGINE1_ELECTRICAL_LOAD

ENGINE1_ENGINE_VIBRATION

ENGINE1_FF_GPH

ENGINE1_FF_PPH

ENGINE1_FF_PPH_SSL
%

ENGINE1_FUEL_PRESSURE
PSI

ENGINE1_HYDRAULIC_PRESSURE
PSI

ENGINE1_HYDRAULIC_QUANTITY
%

ENGINE1_MAGNETO_LEFT

ENGINE1_MAGNETO_RIGHT

ENGINE1_MANIFOLD_PRESSURE

ENGINE1_MIXTURE_LEVER_POS
%

ENGINE1_N1_RPM
%. Note: the N1 and N2 names actually obtain what FS98 names N2 and N1 respectively: i..e the names are reversed. This is to correct an assumed error in the original naming.

ENGINE1_N2_RPM
%

ENGINE1_OIL_PRESSURE
PSI

ENGINE1_OIL_QUANTITY
%

ENGINE1_OIL_TEMPERATURE
degrees C

ENGINE1_PRESSURE_RATIO

ENGINE1_PROPELLER_LEVER_POS
propeller lever position (%)

ENGINE1_ROTOR_RPM

ENGINE1_RPM

ENGINE1_STARTER_SWITCH_POS

ENGINE1_THROTTLE_LEVER_POS
%

ENGINE1_TORQUE

ENGINE1_TORQUE_PERCENT

ENGINE1_TRANSMISSION_PRESSURE

ENGINE1_TRANSMISSION_TEMPERATURE

ENGINE1_TURBINE_TEMPERATURE
degrees C

ENGINE2_ANTI_ICE_SWITCH

ENGINE2_CHT

ENGINE2_COMBUSTION

ENGINE2_EGT

ENGINE2_ELECTRICAL_LOAD

ENGINE2_ENGINE_VIBRATION

ENGINE2_FF_GPH

ENGINE2_FF_PPH

ENGINE2_FF_PPH_SSL
%

ENGINE2_FUEL_PRESSURE
PSI

ENGINE2_HYDRAULIC_PRESSURE
PSI

ENGINE2_HYDRAULIC_QUANTITY
%

ENGINE2_MAGNETO_LEFT

ENGINE2_MAGNETO_RIGHT

ENGINE2_MANIFOLD_PRESSURE

ENGINE2_MIXTURE_LEVER_POS
%

ENGINE2_N1_RPM
%. Note: the N1 and N2 names actually obtain what FS98 names N2 and N1 respectively: i..e the names are reversed. This is to correct an assumed error in the original naming.

ENGINE2_N2_RPM
%

ENGINE2_OIL_PRESSURE
PSI

ENGINE2_OIL_QUANTITY
%

ENGINE2_OIL_TEMPERATURE
degrees C

ENGINE2_PRESSURE_RATIO

ENGINE2_PROPELLER_LEVER_POS
propeller lever position (%)

ENGINE2_ROTOR_RPM

ENGINE2_RPM

ENGINE2_STARTER_SWITCH_POS

ENGINE2_THROTTLE_LEVER_POS
%

ENGINE2_TORQUE

ENGINE2_TORQUE_PERCENT

ENGINE2_TRANSMISSION_PRESSURE

ENGINE2_TRANSMISSION_TEMPERATURE

ENGINE2_TURBINE_TEMPERATURE
degrees C

ENGINE3_ANTI_ICE_SWITCH

ENGINE3_CHT

ENGINE3_COMBUSTION

ENGINE3_EGT

ENGINE3_ELECTRICAL_LOAD

ENGINE3_ENGINE_VIBRATION

ENGINE3_FF_GPH

ENGINE3_FF_PPH

ENGINE3_FF_PPH_SSL
%

ENGINE3_FUEL_PRESSURE
PSI

ENGINE3_HYDRAULIC_PRESSURE
PSI

ENGINE3_HYDRAULIC_QUANTITY
%

ENGINE3_MAGNETO_LEFT

ENGINE3_MAGNETO_RIGHT

ENGINE3_MANIFOLD_PRESSURE

ENGINE3_MIXTURE_LEVER_POS
%

ENGINE3_N1_RPM
%. Note: the N1 and N2 names actually obtain what FS98 names N2 and N1 respectively: i..e the names are reversed. This is to correct an assumed error in the original naming.

ENGINE3_N2_RPM
%

ENGINE3_OIL_PRESSURE
PSI

ENGINE3_OIL_QUANTITY
%

ENGINE3_OIL_TEMPERATURE
degrees C

ENGINE3_PRESSURE_RATIO

ENGINE3_PROPELLER_LEVER_POS
propeller lever position (%)

ENGINE3_ROTOR_RPM

ENGINE3_RPM

ENGINE3_STARTER_SWITCH_POS

ENGINE3_THROTTLE_LEVER_POS
%

ENGINE3_TORQUE

ENGINE3_TORQUE_PERCENT

ENGINE3_TRANSMISSION_PRESSURE

ENGINE3_TRANSMISSION_TEMPERATURE

ENGINE3_TURBINE_TEMPERATURE
degrees C

ENGINE4_ANTI_ICE_SWITCH

ENGINE4_CHT

ENGINE4_COMBUSTION

ENGINE4_EGT

ENGINE4_ELECTRICAL_LOAD

ENGINE4_ENGINE_VIBRATION

ENGINE4_FF_GPH

ENGINE4_FF_PPH

ENGINE4_FF_PPH_SSL
%

ENGINE4_FUEL_PRESSURE
PSI

ENGINE4_HYDRAULIC_PRESSURE
PSI

ENGINE4_HYDRAULIC_QUANTITY
%

ENGINE4_MAGNETO_LEFT

ENGINE4_MAGNETO_RIGHT

ENGINE4_MANIFOLD_PRESSURE

ENGINE4_MIXTURE_LEVER_POS
%

ENGINE4_N1_RPM
%. Note: the N1 and N2 names actually obtain what FS98 names N2 and N1 respectively: i..e the names are reversed. This is to correct an assumed error in the original naming.

ENGINE4_N2_RPM
%

ENGINE4_OIL_PRESSURE
PSI

ENGINE4_OIL_QUANTITY
%

ENGINE4_OIL_TEMPERATURE
degrees C

ENGINE4_PRESSURE_RATIO

ENGINE4_PROPELLER_LEVER_POS
propeller lever position (%)

ENGINE4_ROTOR_RPM

ENGINE4_RPM

ENGINE4_STARTER_SWITCH_POS

ENGINE4_THROTTLE_LEVER_POS
%

ENGINE4_TORQUE

ENGINE4_TORQUE_PERCENT

ENGINE4_TRANSMISSION_PRESSURE

ENGINE4_TRANSMISSION_TEMPERATURE

ENGINE4_TURBINE_TEMPERATURE

FLAPS_HANDLE_POS

FLAPS_POS_LEFT

FLAPS_POS_RIGHT

FUEL_QUANTITY_CENTER
US gallons

FUEL_QUANTITY_CENTER2
FS2K ONLY: US gallons

FUEL_QUANTITY_LEFT
US gallons

FUEL_QUANTITY_RIGHT
US gallons

FUEL_TANK_CENTER_LEVEL
%

FUEL_TANK_CENTER2_LEVEL
FS2K ONLY: %

FUEL_TANK_LEFT_AUX_LEVEL
%

FUEL_TANK_LEFT_MAIN_LEVEL
%

FUEL_TANK_LEFT_TIP_LEVEL
%

FUEL_TANK_RIGHT_AUX_LEVEL
%

FUEL_TANK_RIGHT_MAIN_LEVEL
%

FUEL_TANK_RIGHT_TIP_LEVEL
%

FUEL_TANK_SELECTOR
INTEGER value: 0 = OFF, 1 = ALL, 2 = Left,
3 = Right, 4 = LeftAux, 5 = RightAux,
6 = Centre, 7 = Crossfeed (see selector)

G_FORCE

GEAR_HANDLE_POS

GEAR_POS_LEFT

GEAR_POS_NOSE

GEAR_POS_RIGHT

GROUND_ALTITUDE
ground level altitude (feet)

GYRO_DRIFT_ERROR

KOHLSMAN_SETTING_HG
knob position inches of hg

KOHLSMAN_SETTING_MB
knob position millibars

LANDING_LIGHTS
NZ = landing lights on

MACH

MAGNETIC_VAR
magnetic north vs. true north angular error

MARKER_BEACON_STATE

NAV1_MORSE_IDENT

NAV1_VOR_RADIAL

NAV2_MORSE_IDENT

NAV2_VOR_RADIAL

OIL_QUANTITY_TOTAL
Quarts

OVERSPEED_WARNING
NZ = overspeed warning

PANEL_LIGHTS
NZ = panel lighting on

PARKING_BRAKE_POS
0 = off, 32768 = full on

PITOT_HEAT

PLANE_ALTITUDE
current position of our aircraft, feet

PLANE_BANK_DEGREES

PLANE_HEADING_DEGREES_GYRO

PLANE_HEADING_DEGREES_MAGNETIC

PLANE_HEADING_DEGREES_TRUE

PLANE_LATITUDE
current position of our aircraft, in degrees (+ = N, – = S)

PLANE_LONGITUDE
current position of our aircraft, in degrees (+ = E, – = W)

PLANE_PITCH_DEGREES

PRESSURE_ALTITUDE

RUDDER_PEDAL_IND
rudder
–16384 = left pedal pushed full in

RUDDER_PEDAL_POS
rudder pedals
–16384 = left pedal pushed full in

RUDDER_POS
Rudder Position
–16384 = full left ?

SIM_SPEED
Single bit indicating simulation speed, thus:
0.25x
0x0040

0.5x
0x0080

1x
0x0100

2x
0x0200

4x
0x0400

8x
0x0800

16x
0x1000

32x
0x2000

64x
0x4000

128x
0x8000

SMOKE_ENABLE
NZ = smoke system active

SPOILERS_ARMED

SPOILERS_HANDLE_POS

SPOILERS_POS_LEFT

SPOILERS_POS_RIGHT

STALL_WARNING
NZ = 5 knots before stall

STROBE_FLASH
NZ = strobe flash on model & screen

STROBE_LIGHTS
NZ = strobe lights on

SUCTION_PRESSURE

TOTAL_AIR_TEMP

TURB_ENGINE_1_AFTERBURNER
FS2K ONLY

TURB_ENGINE_2_AFTERBURNER
FS2K ONLY

TURB_ENGINE_3_AFTERBURNER
FS2K ONLY

TURB_ENGINE_4_AFTERBURNER
FS2K ONLY

TURN_COORDINATOR_BALL_POS
turn coordinator ball position
–127 – 0 – +127

VERTICAL_SPEED
Velocity Up, vertical speed (ft/min)

VOR1_BACK_COURSE_FLAGS
INTEGER value: status of VOR1: a mix of values from:
1 = Back course available
2 = BC localiser tuned in
4 = On back course
128 = VOR is active

VOR1_CODE

VOR1_GS_FLAG

VOR1_GS_NEEDLE

VOR1_IDENTITY

VOR1_MAG_VAR

VOR1_NEEDLE

VOR1_OBI

VOR1_SIGNAL_STRENGTH

VOR1_TF_FLAG
INTEGER value: To/From flag:
0=Off, 1=To, 2=From

VOR2_BACK_COURSE_FLAGS
INTEGER value : status of VOR2: : a mix of values from:
1 = Back course available
2 = BC localiser tuned in
4 = On back course
128 = VOR is active

VOR2_BEARING_DEGREES

VOR2_CODE

VOR2_GS_FLAG

VOR2_IDENTITY

VOR2_MAG_VAR

VOR2_NEEDLE

VOR2_OBI

VOR2_SIGNAL_STRENGTH

VOR2_TF_FLAG
INTEGER value: To/From flag:
0=Off, 1=To, 2=From

WHISKEY_COMPASS_DEGREES

YOKE_IND_X
aileron
–16384 = yoke turned full left

YOKE_IND_Y
yoke Y position
–16384 = yoke pushed full in

YOKE_POS_X
aileron
–16384 = yoke turned full left

YOKE_POS_Y
yoke Y position
–16384 = yoke pushed full in

ZULU_DAY
GMT day of year (1–365/366)

ZULU_HOUR
GMT hour

ZULU_MINUTE
GMT minute

ZULU_YEAR
GMT year

Appendix 2: The IPC INTERFACE [For programmers]
Since version 2.51, Esound has been usable by FSUIPC application programs though the IPC interface. This uses IPC offsets in the region 0x4200-0x42FF, as follows:

4200
BYTE
Command/Engaged Marker

Values are:

0 = FREE: ESOUND is ready for a command (written by ESOUND)

1 = PLAY once command (written by application)

2 = PLAY looped command (written by application)

3 = STOP playing command (written by application)

4 = QUERY sound status (written by application)

4201
BYTE
Reserved.

4202
WORD
Sound STATUS as a 16-bit word. Related to the REFERENCE (below)

Values are:

0 = Status not set

1 = Playing sound once

2 = Playing sound in loop

3 = sound has ended, or reference not listed

4204
DWORD
REFERENCE as 32-bit integer.

The application can use this how it likes, but it should be unique, otherwise the same sound is referenced.

4208
Char string

Up to 247 characters plus a zero terminator, identifying the Wave file to be played when a PLAY or PLAY LOOP command is given. The ".wav" suffix is not needed, but can be given.

See the main ESOUND document sections regarding the paths—the default is the <FS>\Sound folder, but you can use subfolders within this. Include <drive>:details for a complete and separate path.

PROTOCOL

General

1. Wait for COMMAND (Byte at 4200) = 0 (don't forget to Sleep a little).

2. Then write data to 4204 (DWORD) and, for a new sound to play, the file or pathname to 4208 (zero-terminated character string).

3. Finally write the Command to 4200.

Note that the latter two parts, writing to 4204- and to 4200 *can* be done in the same “FSUIPC_Process" call, provided the FS6IPC structure to write the data to 4204 onwards is listed before that setting the command to 4200. Otherwise the command may be obeyed with wrong data!

Status

For a new sound the "reference" DWORD should be unique. if your program is the only one using Esound, and you are sure of this, then this is easy. You can use addresses of wave filename strings, or sequence numbers, whatever. But if you may be sharing the resource via IPC this may not be good enough. Maybe the user even runs TWO or more copies of your program?

To get a unique reference there are two simple methods:

a) Use the current time or "tick count" as the reference (e.g. the result of the windows API call "GetTickCount()"). This isn't guaranteed to be unique, but it's a good start. For several close or simultaneous sounds, get one tick count and add 1 for each successive sound.

b) Ask ESOUND for the status of the sound with a given reference. If it says the sound doesn't exist or has ended, then just use the same reference again.

Note that if you use the same reference as a playing sound to play a new sound, then the earlier one will stop and the new one will start. For a program with sequential sounds this is fine. you only need different references when you want overlapping or simultaneous sounds.

Okay. Here's how to get the Status:

1. Wait for COMMAND byte at 4200 = 0 (don't forget to Sleep a little)

2. Write your reference to the DWORD at 4204

3. Write 4 (QUERY STATUS command) to 4200

4. Wait for COMMAND byte at 4200 = 0

5. Read STATUS in WORD at 4202.

If the STATUS value is 3 then the reference is unused or the referenced sound has Ended.

Play/Loop sound

Having determined a reference to use in any way you like, as described above,

1. Wait for COMMAND byte at 4200 = 0 (don't forget to Sleep a little)

2. Write Reference to DWORD at 4204 and Wave filename or pathname to 4208 onwards.

3. Write PLAY (1) or PLAY LOOP (2) command to 4200

Stop sound

1. Wait for COMMAND byte at 4200 = 0 (don't forget to Sleep a little)

2. Write Reference for sound to be stopped to DWORD at 4204.

3. Write STOP (3) command to 4200

Epilogue

The sound will be played according to the Module entry in the ESOUND.CFG [Settings] section. The user controls this, not you.

If a Looped sound gets stuck on because your program or the LAN (or even WideFS!) screws up, or something, you can stop it either by closing down FS and restarting it, or simply making some ineffective change to ESOUND.CFG and re-saving it. Esound always resets all sounds when it reloaded the CFG file.

