EPICINFO: Data from FS98, FS2000, FS2002 or FS2004 to EPIC

[image: image1.png]Version 4.22 of EPICINFO.DLL
for ISA and USB versions of EPIC

by Pete Dowson, 9th December 2003

This package contains the following:

EPICINFO.DLL version 4.22

This document

You also need a recent version of FSUIPC, at least 2.975 for FS versions up to FS2002, and at least 2.983 (a Beta version) for FS2004.

For details of changes please see the History section at the end of the document.

Requirements

Unless you are only using EPICINFO as an FS state variable logging tool, or a panel-oriented selection tool for the ESOUND package, you will also need the appropriate EPIC driver software. This depends on whether you are using the ISA EPIC card or the USB version (or both).

For the ISA version you can use EPIC95: the one containing version 5.11 (or later) of EPIC.VXD is needed for full use of the facilities in this module. The version of EPIC.VXD current at the time of this release is 5.71. You cannot use this method on Windows 2000 or Windows XP as those operating systems do not support the old VXD type drivers.

For the USB version you need the USB drivers, plus a recent version of EPICIO.DLL. This latter DLL must not be installed into the FS modules folder, but into the Windows/System or, more appropriately, the Windows/System32 folder. These files can be obtained from www.flightlink.com/epic/library.html.

FSUIPC is supplied with EPICINFO because most functions of EPICINFO are dependent upon that module. You are advised to keep track of the latest version of FSUIPC (see http://www.schiratti.com): the one included here is not supplied with documentation (which you need and will get in the full released package) and it may not be the latest.

EPIC programming considerations

Please also note that the extensive use of POV (point of view) inputs to FS is not so viable as it used to be, for two reasons:

1. The USB drivers are based on the new Windows Driver Model (WDM), and deed values through to DirectX standards rather than the original Windows joystick API (which is supported as a sort of compatibility aid). The POV values are currently restricted to representing directions in 1/100ths of a degree, so values cannot fall outside the range 0–35999. Perhaps this may be overcome in a later version of the drivers, but meanwhile it makes the use of POVs for such things as Altitude and Vertical Speed setting impossible.

2. Since FS2002, FS uses DirectInput for joysticks instead of the Windows joystick API as it used to. Therefore, even when used with the ISA EPIC and the VXD, the POV values are restricted.

The answer is to do two things:

(a)
Re-program any EPL use of “SetFinePov” which requires a range outside 0–35999 to use any one of the “soft axes” (i.e. SetX4–SetZ15, SetU0–SetV15). These can pass up any 16-bit value without interference,

(b)
Declare all POV and Soft Axis inputs to FS within the EPICINFO.CFG file, not in the FS CFG file. Full details for all likely FS control inputs are given below, and you can even address other values by using FSUIPC interface offsets where necessary.

Introduction and installation

This is an FS98/2000/2002/2004 module, to be placed in FS’s Modules folder. You should also install the latest compatible version of FSUIPC, as many functions of EPICINFO depend on it for assistance.

If you previously used EPICINFO.GAU, before using this new module you must remove ALL copies of the Gauge version from the FS Gauges folder—under whatever names you have used. Then, edit each of the panels into which you added the gauge and remove the line for it. Don’t forget to renumber any subsequent gauge entries, if any.

Sorry about this extra work, but it is for the best. Having EPICINFO as a full FS module brings an assortment of benefits that I’m sure you’ll appreciate in the long run.

Whilst you are editing the PANEL.CFG files, if you want different EPICINFO parameters for different panels, you can add a section to the end of each file as follows:

[Epic]

Ref=<name>

Where “<name>” is any string you like, to differentiate the parameter sets in the EPICINFO.CFG file. More about this later. If you originally used renamed copies of EPICINFO.GAU for this selection, you can simply make the “<name>” part the same as your renamed GAU file—the same section in the CFG file will then be selected.

EPICINFO is configured by the file “EPICINFO.CFG”, which you need to create following the instructions in this document, and place in your main FS directory. Debugging options are selectable, and the information to be sent is also determined in this file. There is some concern that too many values being sent will affect the performance of FS, so the ability to tailor it to suit is preferred to a global “send it all” approach. The EPICINFO.CFG file, described in more detail below, contains ‘sections’ that bear the reference name(s) referred to in the panels. It is this method which allows the same module to have different properties when used in different panels.

EPICINFO.CFG

The module will work without an EPICINFO.CFG file, but it will then default to some basic actions (as described below as ‘default’). It is always best to create an EPICINFO.CFG file even if it only contains one section with the global (“[All]”) and possibly default reference listed (“[Default]”).

Here is a typical EPICINFO.CFG file:

[All]

ReSend=511

SMCP=1

LogSMCP=1

MouseScale=1024,768

[Default]

Sets=KR1

[ArataMD80]

Sets=KR1

Mouse1=772,636

Mouse2=206,305

Mouse3=138,405

[1Prop]

Sets=1Prop,KR1,GPS

PanelId=1

[Test]

LogButtons=1

Sets=All

The section “All” is applied first to all panels. The Default section is also applied to all panels that have no [Epic] section reference in the PANEL.CFG file, or an unmatched reference.

In this example the global parameters include:

· the button number used to ‘ReSend’ all data (PHs and QPs)—to re-initialise displays and so on;

· MouseScale—setting the screen co-ordinates for mouse positioning (not currently applicable to USB EPIC)

· parameters to enable EPICINFO to cooperate with Enrico Schiratti’s MCP program, and Log its events and specific commands.

Then four panels are configured:

ArataMD80 (so called as it is tailored for use with the shareware MD82 panel by Rodolfo Arata) supports KR1 data (for the FlightLink KR–1 avionics stack) and three specified mouse clicking positions. These operate some of the special features on the panel which cannot be reached by keyboard or button/joystick action: the Check List, GS Warning, and the takeoff/landing bugs select.

The 1PROP reference is set for single prop engine data (“1Prop”), as well as KR1 and GPS data. The PanelId is set here so that the EPL program in the Epic can configure itself for propeller aircraft (those entries with no “PanelId” parameter automatically get a panel Id of 255, or 254 is Schiratti’s MCP is running and SMCP=1 is set).

The TEST entry is NOT recommended for real “flying” as it logs every piece of data currently provided, and even tries to send almost all of it to EPIC. Since some Pigeon Hole numbers are re-used for different data sets, this sort of operation is only used for serious FS performance examination (it is interesting seeing the values and how they change) or to determine what data is actually useful to you.

The DEFAULT entry is a catchall, and in this case just ensures that my KR-1 avionics stack will get properly used with any new FS panel I may introduce, even if I don’t edit its PANEL.CFG file.

Before examining each keyword in the CFG file, lets revise the methods for sending data to EPIC. There are three ways in which the module can communicate with EPIC through the VXD or, for USB, through EPICIO.DLL:

· Sending values direct for display. This bypasses the EPL code, and is avoided here.

· Triggering the execution of EPL procedures via “DefineQProc”. This is used extensively for events—something changing, becoming True or False, or passing from one defined value or range to another.

· Sending data to “Pigeon Holes” and triggering the execution (optionally) of EPL procedures. This is used for all values being sent.

· Indirectly, specifying mouse positions which can be referred to in the EPL. This is currently applicable only to ISA EPIC installations, as it needs the provisions for mouse control in the VXD. The actual table of mouse positions is, in fact, kept in the VXD driver, not actually sent on to the EPIC control program. Mouse operation depends upon having the EPICMOUS.EXE program running (see the EPIC95 document for more details).

The tables appended to this document show all the DefineQProc events (QP) and the Pigeon holes (PH) used in the current EPICINFO module, along with the “Sets” name(s) used to select them.

Here is the full list of the parameters which can be entered in each section of the CFG file:

Epic

Unless you have more than one EPIC on the Flight Sim PC you can omit this parameter. If you have an ISA EPIC card installed plus a USB EPIC connected, or more than one USB EPICs connected, then you can select which one should receive data from EPICINFO. The parameter should be entered as one of these:

EPIC=All
to send data to all EPICs (this is the default action in any case)

EPIC=0
to send data only to the ISA EPIC

EPIC=n

where n is 1–4, to send data only to EPIC USBn.

AxisReads

If you are using the more recent EPICentre and EPICIO.DLL to drive the EPIC card (whether ISA or USB connected) you can choose whether EPICINFO reads “soft” or “virtual” joystick axes and POV data values via the Windows joystick API, or by reading “Enque16” events through EPICIO.DLL, or both. Which one you choose will depend on how you’ve coded your EPL and what options you are using there.

AxisReads=Joy

to read values through Windows

AxisReads=Enques
to read values through EPICIO.DLL

AxisReads=Both
to read both (last change wins!)

Note that only a subset of the EPIC95-defined Enque16 events are supported. There are no “incs/decs” for instance. The ones supported are:

Soft axis “Sets”, i.e. SetX4 through to SetZ15, and SetUn, SetVn (n=0–15)

SetPovn, n=0–15

SetFinePovn, n=0–15

SetBcdPovn, n=0–15

Log

= 0 for data Logging OFF (Default)

= 1 for data Logging ON
= 2 for additional logging for EPICIO.DLL interaction (logs QP/PHs sent to EPICIO, and all events read).

= 3 for all the above logging, plus logging of all changes in axes read through the Windows API.

The module always produced a Log file, no matter what setting is used here. This file is named EPICINFO.LOG) and is always placed in the main FS directory. Each time FS is loaded with the EPICINFO module, so that the latter is installed, a new Log file is started, overwriting any previous one with the same name. Thus, there is not a continual accumulation of new files, but at most only one possibly large file overwritten each time FS is run.

With data logging off (LOG=0) the Log will only contain a title with the module version number, details of which EPIC95 joystick is the first detected (used to send data to EPIC), the version number of the VXD being used, and a list of the CFG file parameters recognised and obeyed. (Note: if LogSMCP=1 there will also be entries for Enrico Schiratti’s MCP program, more so if it is actually running).

With data logging on, (LOG=1) there will be an entry in the Log for every monitored FS98 variable (according to the selections made, see later), with it’s original value, as seen in FS98, and the values actually sent to EPIC. If ALL sets of data are being sent, this can make for a very large file, so keep such test flights short!

For USB EPIC users, or those using EPICIO.DLL rather than the EPIC95 VXD driver on the ISA EPIC, logging of transactions with the EPICIO.DLL is enabled by setting Log=2.

LogButtons

= 0 for data Button Logging OFF, or = 1 for Button Logging ON. (Default = 0)

If data logging is enabled and Button Logging is also enabled, the module tries to log every change to the button states. However it can only log those it actually sees. Since the elapsed time (in milliseconds) is also logged for every entry, the actual time during which buttons are pressed can also be seen. Note that the VXD facilities for pulsing buttons can result in very short press times, since these are then dependant upon FS frame rates. Pulses will usually be missed by the module.

SMCP

Include this parameter as “SMCP=1” if you use Enrico Schiratti’s improved autopilot control program, MCP.EXE. With the SMCP=1 parameter included, EPICINFO will check for MCP.EXE. If it is operating in conjunction with FS ((whether on the same PC or via WideFS from another PC)), then the MCP values and indications are used in place of FS’s own, and a number of additional QP events and Pigeon Hole values are provided, when selected for the current panel.

Additionally, EPICINFO provides a set of additional EPIC button controls to operate MCP, ND and PFD functions. You need build 304 or later of the MCP package for these to work. The parameters are:

MCP_ALT

ALT button

MCP_ALTBTN
747 MCP altitude dial pushbutton

MCP_APL

Left A/P button (AP1)

MCP_APC

Centre A/P button (AP2)

MCP_APR

Right A/P Button (AP3)

MCP_APDIS

A/P disengage button or lever

MCP_APDIS1

Special A/P disengage, not in B747-400 MCP

MCP_APENG

AutoPilot Engage (not in B747-400 MCP)

MCP_APP

APP button

MCP_ATOff

AutoThrottle Disarm

MCP_ATOn

AutoThrottle Arm

MCP_FDOff

Flight Director OFF

MCP_FDOn

Flight Director ON

MCP_FLCH

Flight Level CHange button

MCP_HDG

HDG button

MCP_HDGBTN
747 MCP heading dial pushbutton

MCP_LNAV

LNAV button

MCP_LOC

LOC button

MCP_SEL

IAS/Mach SELEctor button

MCP_SPD

Speed button

MCP_SPDBTN
747 MCP speed dial pushbutton

MCP_THR

THRust button

MCP_VNAV

VNAV button

MCP_VS

VS button

ND_MAP

ND map mode display (for Captain’s ND)

ND_CTR

ND centre mode display

ND_ROSE

ND rose mode display

ND_PLAN

ND plan mode display

ND_MODE-

ND mode cycle backwards

ND_MODE+

ND mode cycle forwards

ND_R10

ND range 10nm

ND_R20

ND range 20nm
ND_R40

ND range 40nm
ND_R80

ND range 80nm
ND_R160

ND range 160nm
ND_R320

ND range 320nm
ND_R640

ND range 640nm

ND_RANGE-

ND decrease range (cycles back to 640 after 10)

ND_RANGE+

ND increase range (cycles back to 10 after 640)

ND_VOR

ND show VORs

ND_NDB

ND show NDBs
ND_WPT

ND show WPTs
ND_ARPT

ND show ARPTs
ND_DATA

ND show DATA
ND_POS

ND show POS

ND_MAPWPT-
ND MAP view, centre on previous waypoint
ND_MAPWPT+
ND MAP view, centre on next waypoint
ND2_MAP

ND 2 map mode display (for First Officer’s ND)

ND2_CTR

ND 2 centre mode display

ND2_ROSE

ND 2 rose mode display

ND2_PLAN

ND 2 plan mode display

ND2_MODE-

ND 2 mode cycle backwards

ND2_MODE+

ND 2 mode cycle forwards

ND2_R10

ND 2 range 10nm

ND2_R20

ND 2 range 20nm
ND2_R40

ND 2 range 40nm
ND2_R80

ND 2 range 80nm
ND2_R160

ND 2 range 160nm
ND2_R320

ND 2 range 320nm
ND2_R640

ND 2 range 640nm
ND2_RANGE-

ND 2 decrease range (cycles back to 640 after 10)

ND2_RANGE+
ND 2 increase range (cycles back to 10 after 640)

ND2_VOR

ND 2 show VORs

ND2_NDB

ND 2 show NDBs
ND2_WPT

ND 2 show WPTs
ND2_ARPT

ND 2 show ARPTs
ND2_DATA

ND 2 show DATA
ND2_POS

ND 2 show POS
PFD_DH-10

PFD decision height decrement by 10 feet

PFD_DH+10

PFD decision height increment by 10 feet
MCP_HDG-1

MCP heading decrement by 1 degree
MCP_HDG+1

MCP heading increment by 1 degree
MCP_HDG-10

MCP heading decrement by 10 degrees
MCP_HDG+10
MCP heading increment by 10 degrees
MCP_ALT-100
MCP altitude decrement by 100 feet
MCP_ALT+100
MCP altitude increment by 100 feet
MCP_ALT-1000
MCP altitude decrement by 1000 feet
MCP_ALT+1000
MCP altitude increment by 1000 feet
MCP_SPD-1

MCP speed decrement by 1 knot or 0.01 mach
MCP_SPD+1

MCP speed increment by 1 knot or 0.01 mach
MCP_SPD-10

MCP speed decrement by 10 knots or 0.01 mach
MCP_SPD+10

MCP speed increment by 10 knots or 0.01 mach
MCP_VS-100

MCP vertical speed decrement by 100 feet/min
MCP_VS+100

MCP vertical speed increment by 100 feet/min
MCP_CRS-1

MCP course decrement by 1 degree
MCP_CRS+1

MCP course increment by 1 degree

EICAS_CTLS

Toggle showing controls on Engine page

EICAS_STBY

Toggle showing standby gauge on Engine page

EICAS_ENGPAGE-
Engine page decrement
EICAS_ENGPAGE+
Engine page increment

EICAS_SYNPAGE-
Synoptic page decrement
EICAS_SYNPAGE+
Synoptic page increment
EICAS_SVO1_ON
Start Valve Open indicator control, engines 1–4

EICAS_SVO1_OFF

EICAS_SVO2_ON

EICAS_SVO2_OFF

EICAS_SVO3_ON

EICAS_SVO3_OFF

EICAS_SVO4_ON

EICAS_SVO4_OFF

EICAS_OFB1_ON
Oil Filter Bypass indicator control, engines 1–4

EICAS_OFB1_OFF

EICAS_OFB2_ON

EICAS_OFB2_OFF

EICAS_OFB3_ON

EICAS_OFB3_OFF

EICAS_OFB4_ON

EICAS_OFB4_OFF

EICAS_LOP1_ON
Low Oil Pressure indicator control, engines 1–4

EICAS_LOP1_OFF

EICAS_LOP2_ON

EICAS_LOP2_OFF

EICAS_LOP3_ON

EICAS_LOP3_OFF

EICAS_LOP4_ON

EICAS_LOP4_OFF

AB_LS

AirBus variants

AB_QNH_PUSH

AB_QNH_PULL

AB_SPD_PUSH

AB_SPD_PULL

AB_HDG_PUSH

AB_HDG_PULL

AB_ALT_PUSH

AB_ALT_PULL

AB_VS_PUSH

AB_VS_PULL

AB_ND_ILS

AB_ND_VOR1_ON

AB_ND_ADF1_ON

AB_ND_VORADF1_OFF

AB_ND_VOR2_ON

AB_ND_ADF2_ON

AB_ND_VORADF2_OFF

AB_ND_METRIC

AB_ND_HDGVS_TRKFPA

AB_ND2_ILS

AB_QNH-

AB_QNH+

As with the ReSend parameter, below, these all allocate an EPIC button number (0–511) to control the function indicated. The normal action is triggered by and off-to-on transition, but the button number can be followed by “,1” to indicate an “off-to-on” change, or “,2” for either.

For example:

MCP_FDOn=448

MCP_FDOff=448,1

would be most appropriate when 448 is controlled by a Toggle switch on your cockpit, the Enque16 “BtnOn” command being used when the switch is really on, and “BtnOff” when really off. On the other hand,

MCP_SPD=453,2

is more appropriate for a push button, which would best drive EPIC VxD button 453 by an Enque16 “BtnToggle” command. Avoid “BtnPulse” in both cases as pulses can be missed if the Joysticks are scanned in FlightSim.

MCP_IAS_VAR

MCP_HDG_VAR

MCP_ALT_VAR

MCP_VS_VAR

MCP_MACH_VAR

These keywords can be used to define joystick axes or POVs, controlled by the EPIC, to set values directly to the Project Magenta MCP registers.

The parameters are in the form

MCP_XXXX_VAR=<joystick#>,<axis#>

Much like the way in which these inputs can be defined in the MCP.INI file itself. The joystick number runs from 0 to 15, whilst the axes are 1–6, with 7 being the POV.

Having EPICINFO perform this function allows you to run the MCP program on a separate PC under WideFS. Before this you would have needed another EPIC card and EpicLink to copy axis or POV values across to the running MCP program.

Note that if you are using the more recent EPICentre and EPICIO.DLL to drive the EPIC card (whether ISA or USB connected) you can choose whether EPICINFO reads this axis and POV data via the Windows joystick API, or by reading “Enque16” events through EPICIO.DLL, or both. See the AxisReads parameter, earlier.

LogSMCP

If LogSMCP=1 is included, then, even if normal Logging is not enabled, the log will contain all entries relating to SMCP values, events and button controls. This is specifically to assist in getting home-built MCP panels operational.

MaxScanFrequency

EPICINFO is set to be called by FS every 30 milliseconds or so (at least during normal flight—not when accessing menus and so forth). All of the numerous values are not checked for changes on every such call. This would normally make things run too slowly, especially when many values are required, and for most it is simply not necessary to check the data so frequently. The different values are checked on a priority basis, ranging from at most every interval (very few of these) to only every 30th interval (something close to a second).

For some testing and monitoring purposes these checks may be too slow. In this case, the maximum number of intervals before checking values can be limited by this parameter. Setting MaxScanFrequency to 1, for instance, will make EPICINFO check every value in every interval.

ReSend

Omit this for no “Re-send” option, else provide the “send everything again” EPIC Button Number (0–511). Optionally the button number may be augmented with a “,1” to indicate checking for on-to-off, or “,2”, checking both off-to-on and on-to-off. This latter option is most useful in conjunction with the Enque16 “BtnToggle” command in EPL.

If the ReSend option is used, EPICINFO will look for the selected button and specified change. When it occurs, EPICINFO will re-send all the selected data values to EPIC, just as it does during initialisation.

Note that the 511 in the example above is the last button (31) on the last joystick (15), well out of the way of my FS assignments.

The Button is best controlled in the EPL by the new “BtnToggle” facility, in which case using “ReSend=511,2” will allow a re-send on both changes to on and to off. Otherwise be sure to use “BtnOn” and “BtnOff” with a delay in between, not “BtnPulse”, as there is a danger that pulses will not be seen by EPICINFO. Remember that pulses for an entire joystick are lost as FS itself reads the values, so that is an additional reason for using toggling.

PanelId

If
 this is assigned a number (1–65535), the value provided is sent to the EPIC card in Pigeon Hole 0 whenever the panel is selected. It can be used in the EPL program to select different actions for different panels. When a panel is selected which has no PanelId parameter defined here, PH0 is set all zero except for 255 in byte 0 (or 254 if SMCP=1 and the MCP is running, in which case byte 0 will be set to 254).

ADF_CARD_SET

ADF_COMPLETE_SET

ADF_LOWRANGE_SET

ADF_HIGHRANGE_SET

ADF_NEEDLE_SET

ADF_SET

ADF_SOUND_SET

AP_ALT_VAR_SET_ENGLISH

AP_ALT_VAR_SET_METRIC

AP_MACH_VAR_SET

AP_SPD_VAR_SET

AP_VS_VAR_SET_ENGLISH

AP_VS_VAR_SET_METRIC

AUTOCOORD_SET

AXIS_IND_SET

CLOCK_HOURS_SET

CLOCK_MINUTES_SET

COM_RADIO_SET

COM_RADIO_SWAP

COM_RECEIVE_ALL_SET

COM_STBY_RADIO_SET

COM_STBY_RADIO_SWITCH_TO

COM2_RADIO_SET

COM2_RADIO_SWAP

COM2_STBY_RADIO_SET

COWLFLAP1_SET

COWLFLAP2_SET

COWLFLAP3_SET

COWLFLAP4_SET

DME_SOUND_SET

DME1_SOUND_SET

FLAPS_DETENTS_SET

FLAPS_SET

FUEL_SELECTOR_SET

FUEL_SELECTOR_2_SET

GEAR_SET

GYRO_DRIFT_SET

HEADING_BUG_SET

HEADING_GYRO_SET

KOHLSMAN_SET

MAGNETO_SET

MAGNETO1_SET

MAGNETO2_SET

MAGNETO3_SET

MAGNETO4_SET

MAP_ZOOM_SET

MARKER_SOUND_SET

NAV1_RADIO_SET

NAV1_RADIO_SWAP

NAV1_SOUND_SET

NAV1_STBY_SET

NAV2_RADIO_SET

NAV2_RADIO_SWAP

NAV2_SOUND_SET

NAV2_STBY_SET

SIM_RATE_SET

SOUND_SET

STARTER_SET

STARTER1_SET

STARTER2_SET

STARTER3_SET

STARTER4_SET

TRUE_AIRSPEED_CAL_SET

VIEW_TYPE_SET

VIEW1_DIRECTION_SET

VIEW1_MODE_SET

VIEW1_ZOOM_SET

VIEW2_DIRECTION_SET

VIEW2_MODE_SET

VIEW2_ZOOM_SET

VOR1_SET

VOR2_SET

XPNDR_SET

ZULU_DAY_SET

ZULU_HOURS_SET

ZULU_MINUTES_SET

ZULU_YEAR_SET

These are all Flight simulator controls, mostly what I call “discrete axis” controls, though not all. They are set with values to control things inside FS. It is beyond the scope of this document to go into any detail—you will find help with some of them in my “FS controls” documents, and others may be covered in the Microsoft Panels SDK (these controls are used with a “KEY_” prefix in building Gauges). Also some of them certainly do not work, and many are new to FS2002 so won’t work in previous versions. Your best bet is to experiment with those you think might fulfil your needs.

In EPICINFO.CFG you assign either a POV or an Axis to each of those controls you want to use. POVs are represented by Pn, whilst the axes are Xn, Yn, Rn, Zn, Un and Vn. In each case the n refers to the joystick number, 0–15. For example, for the FlightLink KR-1 Avionics stack using the EPL supplied with it you would currently have these parameters:

COM_RADIO_SET=P1

NAV1_RADIO_SET=P2

NAV2_RADIO_SET=P3

XPNDR_SET=P4

ADF_HIGHRANGE_SET=P5

ADF_LOWRANGE_SET=P6

AP_ALT_VAR_SET_ENGLISH=P7

VOR1_SET=P8

VOR2_SET=P9

HEADING_BUG_SET=P10

Soft axes can be set in EPL using Enque16s, as can POVs. These are fully supported with the ISA Card using the EPIC95 package. If you are using the USB EPIC, or the EPICIO.DLL method of access to either the ISA or USB card (as, for instance, is necessary on Windows 2000 and XP), then the so-called “soft” axes are implemented using “virtual” axes in devices instead, and POVs are declared as part of devices too. Currently POV values through the new drivers are limited to a range of 0 to 35999, so cannot be used for values such as Latitude and Vertical Speed.

If you are using the more recent EPICentre and EPICIO.DLL to drive the EPIC card (whether ISA or USB connected) you can choose whether EPICINFO reads soft axis and POV data via the Windows joystick API, or by reading “Enque16” events through EPICIO.DLL, or both. See the AxisReads parameter, earlier.

FSUIPC_READ_n
(n = 1–64)

This facility allows you to read specific Flight Simulator values into a Pigeon Hole of your choice, via the interface provided by FSUIPC.

Up to 64 different values can be read and these are pre-defined in the CFG file in the following format:

FSUIPC_READ_n=ph,length,offset

where:

n
is 1–64, merely differentiating between the different FSUIPC_READs.

ph
is the Pigeon Hole number to be used (0–255). Try to select an unused one (i.e. not listed in the table later in this document) or at least one which won’t be operating in your application.

length
primarily specifies the size of the variable being read, but offers several special options, thus:

1–4
merely specifies whether 1, 2, 3 or 4 bytes will be read.

–1
specifies a single but signed byte (–-128 to +127) rather than unsigned (0 to 255)

–2
specifies a signed 16-bit integer (–-32768 to +32767)

F
specifies a 32-bit Float, which will be rounded to a 16-bit integer

D
specifies a 64-byte Double, which will be rounded to a 16-bit integer

Fn and Dn are the same as F and D, respectively, but require the floating point number to be multiplied by the decimal number n before being rounded to a 16-bit integer. This is useful for values which are normally fractional.

offset
The FSUIPC offset, in hexadecimal, as listed in the Programmer’s Guide. (You need the FSUIPC SDK package for a complete list).

For example:

FSUIPC_READ_1=160,1,2F80

Reads the current “AutoBrake” setting (0–5) as a single byte, into PH 160.

Note that all values except 3 and 4 byte reads are formatted into the Pigeon Hole in the standard way, as used for most of the values read by standard parameters. In other words: Pigeon Hole bytes 0 and 1 contain decimal values from the absolute (positive) integer: 100’s in byte 1 and the remainder in byte 0 (0–99). If the value is greater than 9999 then byte 1 will contain 99. The 16-bit value itself is stored into bytes 2 and 3, in Lo-Hi order. If the value is signed then this value will be the positive number with 32768 (0x8000) added to indicate negative.

3 and 4 byte values are stored without any conversion into Pigeon Hole bytes 0-2 or 0-3, respectively. Floating point values are converted to signed 16 bit values, so they obey the standard formatting rules just explained.

Note that you can, of course, read two 2-byte values into a single Pigeon Hole as a single 4-byte value. It would be up to your EPL programming to sort it out.

FSUIPC_WRITE_n
(n = 1–64)
This facility allows you to write specific Flight Simulator values from soft axes or ‘POVs’, via the interface provided by FSUIPC.

Up to 64 different values can be written, and these are pre-defined in the CFG file in the following format:

FSUIPC_WRITE_n=axis,length,offset

where:

n
is 1–64, merely differentiating between the different FSUIPC_WRITEs.

axis
is the axis to be used, in the form ‘Xn’. Use P0–P15 for POVs, otherwise Xn, Yn, Rn, Zn, Un or Vn, with n specifying the joystick number (4–15 for soft axes X,Y,R,Z axes, or 0–15 for the U and V axes). [See the AxisReads parameter also, regarding the source of these values].

length
primarily specifies the size of the variable being written, but offers several special options, thus:

1–4
merely specifies whether 1, 2, 3 or 4 bytes will be written. Since soft axis and POV settings from EPIC can only supply 16-bit (2 byte) numbers at most, values in 3 or 4 byte writes will be zero-filled.

–3
specifies a three byte (24 bit) value in which the 3rd byte should contain a replicated sign from the top bit of the axis value (i.e. sign extension).

–4

specifies a four byte (32 bit) value in which the upper 16 bits should contain sign extension from the top bit of the 16-bit axis value.

F
specifies a 32-bit Float, which will be converted from the 16-bit unsigned integer provided by the axis value.

D
specifies a 64-byte Double, which will be converted from the 16-bit unsigned integer provided by the axis value.

Fn and Dn are the same as F and D, respectively, but require the floating point number to be divided by the decimal number n after being converted to floating point. This is useful for values which are normally fractional. You can enter negative values for n to indicate signed values (this does not divide by a negative number, but simply treats the axis value as signed, i.e. –32768 to 32767 rather than 0 to 65535).

offset
The FSUIPC offset, in hexadecimal, as listed in the Programmer’s Guide. (You need the FSUIPC SDK package for a complete list).

For example:

FSUIPC_WRITE_1=X4,1,2F80

writes the “AutoBrake” setting from axis X4 (set in EPL by “nqw(SetX4,value)”), as a single byte, which should range from 0 to 5.

If you are using the more recent EPICentre and EPICIO.DLL to drive the EPIC card (whether ISA or USB connected) you can choose whether EPICINFO reads soft axis and POV data via the Windows joystick API, or by reading “Enque16” events through EPICIO.DLL, or both. See the AxisReads parameter, earlier.

NavInterceptRadial

NavInterceptCourse

LocInterceptZone

GsInterceptZone

These parameters allow the timing of some of the Autopilot signals, sent to EPIC, to be controlled according to the events unfolding in FS. They do not affect operations with the Schiratti MCP.

When operating with the FS autopilot they affect these QP events:

QP 124, 125: OBS1_COURSE_OK:
When the autopilot NAV1 lock is engaged, the Nav intercepts specify, in degrees, how close the current position must be to the OBI-set radial and how close the current heading must be to the OBI-set course before QP125 (“On” or “True”) is sent, and conversely how far out either must be for QP124 (“Off” or “False”) to be sent. The two values can be different for each of the two events, and both can be set. So, for example:

NavInterceptRadial=4,8

NavInterceptCourse=5,10

sends QP125 when the current radial is within 4 degrees of the OBI1 set value (either ‘to’ or ‘from’) and the current heading is within 5 degrees of that value. QP124 is sent when the position or course diverges by 8 degrees and 10 degrees, respectively.

Omit the second value (and the comma), or specify 0 for that value, to prevent QP124 being sent until the NAV lock mode is disengaged.

The defaults are

NavInterceptRadial=4,7

NavInterceptCourse=4,7

QP 126, 127: GS_INTERCEPT_OK:
When the autopilot APR lock is engaged and a GS indication is available, the GS intercept specifies, in FS needle units (don’t ask!), how close the GS needle must be to correct level before QP127 (“On” or “True”) is sent, and conversely how far out it must be for QP126 (“Off” or “False”) to be sent. For example:

GsInterceptZone=5,40

sends QP127 when the aircraft is within 5 needle units of the GS, and QP126 is sent when this diverges by 40 needle units.

Omit the second value (and the comma), or specify 0 for that value, to prevent QP126 being sent until the APR lock mode is disengaged or the GS signal is lost.

The default is

GsInterceptZone=12,90

This coincides approximately with FS’s A/P decision to ‘lock-on’ to the GS, although this does vary from plane to plane.

QP 128, 129: LOC_INTERCEPT_OK:
When the autopilot APR lock is engaged and a LOC indication is available, the LOC intercept specifies, in FS needle units (don’t ask!), how close the LOC needle must be to correct level before QP129 (“On” or “True”) is sent, and conversely how far out it must be for QP128 (“Off” or “False”) to be sent. For example:

LocInterceptZone=125,250

sends QP127 when the aircraft is within 125 needle units of the LOC, and QP126 is sent when this diverges by 250 needle units.

Omit the second value (and the comma), or specify 0 for that value, to prevent QP128 being sent until the APR lock mode is disengaged or the LOC signal is lost.

The default is

LocInterceptZone=100,250

This coincides approximately with FS’s A/P decision to ‘lock-on’ to the LOC, although this does vary from plane to plane.

QP 130, 131: BC_INTERCEPT_OK:
When the autopilot BC lock is engaged and a BC indication is available, the LOC intercept, as described above, is used to decide when QP131 and QP130 are sent.

MouseScale

This gives, in decimal, the screen resolution to be assumed when interpreting any list of Mouse Positions given. The EPICMOUS program adapts the specified mouse positions to the actual screen size when the mouse commands are executed in the EPL. [Note that the mouse facilities are currently only supported for the ISA EPIC]

The format of the parameter is ‘x,y’: i.e. horizontal pixel count, vertical pixel count. Typical settings are

MouseScale=640,480

MouseScale=800,600

MouseScale=1024,768

MouseScale=1280,864

The value used here does not have to be the same as the actual screen resolution you expect to use. It may be more convenient to use that resolution which corresponds to the FS panel upon which the mouse is meant to operate. You can usually determine this by looking at the panel’s “PANEL.CFG” file. Find the [Window_xx] section defining the main panel bitmap (BMP) and look for something like:

size_mm=1280

This indicates a 1280 x 864 resolution bitmap, so use this for the Mouse positions. The gauge positions in the PANEL.CFG file will then be on the same scale (but may have a different origin—mouse positions are from top left on the whole screen, so they’ll only correspond when the panel bitmap is one of those full-screen types with a transparent part for the scenery).

Mouse1 – Mouse63

Up to 63 different mouse positions can be listed, in decimal ‘x,y’ format. They relate to the scale set by MouseScale, above. Your EPL control program can operate mouse positioning either directly using its own built-in co-ordinates or by using these pre-defined ones. The latter method is much better, since the positions can then be easily adjusted to suit each panel, in this EPICINFO.CFG file. [Note that the mouse facilities are currently only supported for the ISA EPIC]

If the EPL program refers to a mouse position number which hasn’t been set for the current panel, then the reference will do nothing. The mouse button operations for that position will be ignored.

Sets

This lists the data required, in pre-selected “Sets” to suit different uses. (default TR1).

There are many FS variables, and not all will be required all the time. In fact, there were not enough Pigeon Holes supported by EPIC to accommodate all the data which could possibly sent from FS (there were only 128 usable Pigeon Holes in the earlier EPIC firmware, although 256 are usable now).

Most variables provided by EPICINFO belong to one or more “Sets”, as listed in the tables below. The few not in Sets must be selected individually. The sets defined are:

TR1
Data to suit the FlightLink TR–1.

KR1
Data to suit the FlightLink KR–1: a superset of the TR1 set.

CP
Data for assorted CockPit implementations

GPS
Data needed for GPS and FMS implementations.

Adv
Data oriented towards flight performance analysis

(“advanced” not “adventure”!).

MCP
Data for a Mode Control Panel, or Enrico Schiratti’s MCP program.

Wea
Weather data

Fuel
Fuel values

Config
Aircraft or panel configuration data (typically sent only once). Abbreviated to CFG below.

Nav
Navigational data

CPExtra
Additional or more unusual CockPit data (abbreviated to CPX below).

1Jet
Single jet Engine data

2Jet
Twin jet Engine data

3Jet
Three jet Engine data

4Jet
Four jet Engine data

Note that there is less individual Engine data for 3 and 4 jet aircraft, as some of the Pigeon Holes have to be re-used.

1Prop
Single prop Engine data

2Prop
Twin prop Engine data

3Prop
Triple prop Engine data

4Prop
Quad prop Engine data

Note that there is less individual Engine data for 3 and 4 prop aircraft, as some of the Pigeon Holes have to be re-used. Helicopter engine data is included for 1 and 2 prop settings only.

Log
This ‘set’ consists of virtually all the variables available to EPICINFO through the Panels interface, which are not already included in any of the other sets. None of these are ever sent to EPIC (though some may well be re-categorised in the light of experience or requests). They are only logged, for research or information purposes. Since these are not sent to EPIC they do not appear in the tables below.

As many of these sets as needed can be listed, but the nJet and nProp settings are mutually exclusive. For several sets, simply list them on the Sets= line, with comma or space separation. Spaces, tabs and punctuation marks are ignored but all act okay as separators.

Instead of listing the individual sets, one of the following can be specified:

None
No sets at all (individual data items can still be selected, of course). Naturally if this set is selected it should be on its own.

All
All sets—so selecting all data. (individual data items can still be de-selected). Naturally, if this “set” is selected, it should be on its own.

Individual Parameters

= 0 to stop specific data item, or = 1 to select it

Each data item available, and listed in the table below, has a Name. This is the name assigned by Microsoft and detailed in the Gauge writing part of its FS98 SDK. Each item can be specifically enabled or disabled by listing its name, exactly as spelled in the table and ‘setting’ it to 0 (to disable) or 1 (to enable). These individual settings override the Sets selection above.

So, for example, you can have all the KR1 set except the GlideSlope flags by:

Sets=KR1

VOR1_GS_FLAG=0

VOR2_GS_FLAG=0

and you can have only the Button change logging and NAV1 radials by:

Log=1

LogButtons=1

Sets=None

NAV1_VOR_RADIALS=1

Whilst this works exactly in this way most of the time, sometimes EPICINFO will automatically enable other items because they are needed. In this last example, for instance, the VOR Radial is to be set ‘invalid’ (255 in 1st byte) is the VOR signal is weak. SO, EPICINFO also obtains the VOR1_SIGNAL_STRENGTH item even though it isn’t specifically requested. These won’t be sent to EPIC, though, unless also requested, whether explicitly or via a Set.

Individual parameters with SCALING

Numeric parameters (not QPs or binary-coded decimal or other flag or enumeration parameters) can be selected and scaled. This is mainly suited to use certain values, such as Engine RPM, to drive gauges, where the value needed for the gauge doesn’t necessary match the real or useful range of the value. Scaling can, with care, also be used to perform unit conversions, such as degrees Centigrade to Fahrenheit, or Gallons per Hour to Pounds Per Hour.

There are two types of scaling provided. The first, scaling to a range, is intended for use with gauges. The second simply allows a different conversion factor to be applied to the original FS values. These are described separately:

SCALING TO A RANGE (for gauges)

Specify scaling as follows:

<ITEM_NAME> = Scale <Range>, <Min>, <Max>

All parts are required, and <Max> must be greater than <Min>. The actual scaling which takes place is as follows (original value = v):

if v < Min, set v = Min

if v >= Max, set v = Max–1

; The value is now within the acceptable range

; Note that “Max” is NOT included in the range, whilst “Min” is

v = v – Min

v = (Range * v) / (Max – min)

; This actually scales the value, linearly. The result is a value between

; 0 and (Range–1), inclusive.

Here’s an example:

ENGINE1_RPM = Scale 256, 0, 3000

This reduces the RPM value to a number from 0 to 255. It is sent in place of the original value in the appropriate Pigeon Hole (PH 100). Note that, by reducing it to a byte value (i.e. less than 256) it can fit into an 8-bit EPL variable, so the following routine can be used to collect it:

DefinePH(100, Eng1rpm, 0,0,0,0)

var(Eng1)

:Eng1rpm { #expand GetPH8(Eng1, 0x0264) }

The “0x0264” value refers to byte 2 of PH 100 (0x64). Byte 2 is used as it contains the low byte of the usual 16-bit value. If we used byte 0 we’d only get 0–99, as the hundreds digit goes into byte 1.

If this value has been obtained to drive a gauge, it only remains to add the appropriate SendData or other command to the above routine.

SCALING THE ORIGINAL FS VALUE

To simply convert the original FS value using your own multiplier and/or divisor, specify the values like this:

<ITEM_NAME> = Scale *<Multiplier>, /<Divisor>

Both parts are optional. Only integer values can be used, however. Here are some examples:

PLANE_BANK_DEGREES=Scale *10

This gives the Bank angle to a .1 degree precision instead of the normal degrees.

FUEL_TANK_CENTER_CAPACITY=Scale *3785, /1000

This converts US Gallons to Litres by multiplying by 3.785. Notice how to use both multiplier and divisor to get more precise numbers like this.

Note that changing the way these values are presented in this way will obviously affect the way the results are packed into the 4 bytes of the Pigeon Holes. Examine the EPICINFO logging to see what you need to do. Often you will have to use the 16-bit value in bytes 2 and 3.

If you only need a divisor, omit the multiplier AND the comma, thus:

<ITEM_NAME> = Scale /<divisor>

Note
The parameters are checked in the CFG file and invalid ones simply ignored. However, the Log file will show those CFG parameters which have been accepted and obeyed, so refer to this to make sure you have entered everything correctly. It is particularly important to get individual data names exactly right. Some of them are actually oddly spelled or even mis-spelled in FS98 itself, but these errors must be replicated!

DefineQProc events (N.B. Not all available in FS2000/FS2002)
Qproc
Event
Sets
Name & Notes

100
EPICINFO started
all

101
EPICINFO terminated
all

102
First set of values all sent
all
After EPICINFO has re-initialised itself (see 103) it sends all the values to the EPIC once, so that the EPIC program can initialise everything to match. When this phase has ended, and only change information is sent, this event occurs.

103
EPICINFO being initialised via the CFG file parameters
all
This is NOT the same as starting. Initialisation does occur after starting, but also when loading a new FS panel.

1

2
DME1 selected by user

DME2 selected by user
TR1

KR1
CURRENT_DME
These two are mutually exclusive. At least one will be ‘true’.

3

4

5
Left gear down

Left gear moving

Left gear up (off)
TR1

KR1
GEAR_POS_LEFT
These events are gauged by reviewing positional values which can be obtained directly also.

6

7

8
Nose gear down

Nose gear moving

Nose gear up (off)
TR1

KR1
GEAR_POS_NOSE
Ditto. Note that the three gear (L,N,R) events seem to occur so close that it is only necessary to take one.

9

10

11
Right gear down

Right gear moving

Right gear up (off)
TR1

KR1
GEAR_POS_RIGHT
Ditto

12

13
Aircraft not on ground

Aircraft on ground
CP
AIRCRAFT_ON_GROUND

14

15

16

17
Marker beacon off

Outer Marker beacon active

Middle Marker beacon active

Inner Marker beacon active
TR1

KR1
MARKER_BEACON_STATE

18

19
Autopilot OFF

Autopilot ON
TR1

KR1

MCP
AUTOPILOT_ACTIVE

Or SMCP AP off (all three) or on (any of three). (See 142–147 for individual MCP A/P events)

20

21
AP altitude hold OFF

AP altitude hold ON
TR1

KR1

MCP
AUTOPILOT_ALTITUDE_LOCK

Or SMCP ALT indicator

22

23
AP heading hold OFF

AP heading hold ON
TR1

KR1

MCP
AUTOPILOT_HEADING_LOCK

Or SMCP HDG indicator

24

25
AP NAV1 hold OFF

AP NAV1 hold ON
TR1

KR1

MCP
AUTOPILOT_NAV1_LOCK

(see also QP’s 124 and 125)

Or SMCP VOR LOC indicator

26

27
Stall warning off

Stall warning active
CP
STALL_WARNING

28

29
Overspeed warning off

Overspeed warning on
CP
OVERSPEED_WARNING

30

31
AP wing leveller off

AP wing leveller on
KR1
AUTOPILOT_WING_LEVELER

32

33
AP attitude hold off

AP attitude hold on
KR1
AUTOPILOT_ATTITUDE_HOLD

34

35
AP takeoff power off

AP takeoff power active
CP
AUTOPILOT_TAKEOFF_POWER_ACTIVE

36

37
Spoilers not armed

Spoilers armed
CP
SPOILERS_ARMED

38

39
AP glideslope hold off

AP glideslope hold on
KR1
AUTOPILOT_GLIDESLOPE_HOLD

(see also QP’s 126 & 127)

40

41
AP approach hold off

AP approach hold on
KR1

MCP
AUTOPILOT_APROACH_HOLD

(Note: this mis-spelling IS ‘correct’ for FS98!)
(see also QP’s 126 – 131)

Or SMCP APP indicator

42

43
AP back course hold off

AP back course hold on
KR1
AUTOPILOT_BACKCOURSE_HOLD

(see also QP’s 130 & 131)

44

45
Yaw damper off

Yaw damper on
CP
AUTOPILOT_YAW_DAMPER

46

47
AP airspeed hold off

AP airspeed hold on
MCP
AUTOPILOT_AIRSPEED_HOLD

Or SMCP SPD indicator (N.B. whether IAS or Mach is indicated by the next entry, for SMCP)

48

49
AP mach hold off

AP mach hold on
MCP
AUTOPILOT_MACH_HOLD

Or SMCP MACH indicator (Indicates whether Mach or IAS currently used in SMCP)

50

51
AP vertical speed hold off

AP vertical speed hold on
MCP
AUTOPILOT_VERTICAL_HOLD

Or SMCP VS indicator

52

53
Auto-throttle off

Auto-throttle armed
MCP
AUTOPILOT_AUTO_THROTTLE_ARM

Or SMCP A/Thr off/on indication

54

55
VOR1 GS flag off

VOR1 GS flag on
KR1

NAV
VOR1_GS_FLAG

56

57
VOR2 GS flag off

VOR2 GS flag on
KR1

NAV
VOR2_GS_FLAG

58

59
Panel lights off

Panel lights on
CPX
PANEL_LIGHTS

60

61
Strobe on

Strobe off
CPX
STROBE_LIGHTS

62

63
ADF not 500Hz tunable

ADF is 500Hz tunable
CFG
ADF_500_HZ_TUNABLE

64

65
Pitot heat is off

Pitot heat is on
CPX
PITOT_HEAT

66

67
Landing lights are off

Landing lights are on
CPX
LANDING_LIGHTS

68

69
DME1 displays distance

DME1 displays speed
CPX
DME1_DISPLAY_TYPE

70

71
DME2 displays distance

DME2 displays speed
CPX
DME2_DISPLAY_TYPE

72

73
Engine 1 left mag not active

Engine 1 left magneto active
nPROP

(n=1–4)
ENGINE1_MAGNETO_LEFT

74

75
Engine 1 rt mag not active

Engine 1 rt magneto active
nPROP

(n=1–4)
ENGINE1_MAGNETO_RIGHT

76

77
Engine 1 anti-ice sw. Off

Engine 1 anti-ice sw. On
nPROP nJET

(n=1–4)
ENGINE1_ANTI_ICE_SWITCH

78

79
Engine 2 left mag not active

Engine 2 left magneto active
nPROP

(n=2–4)
ENGINE2_MAGNETO_LEFT

80

81
Engine 2 rt mag not active

Engine 2 rt magneto active
nPROP

(n=2–4)
ENGINE2_MAGNETO_RIGHT

82

83
Engine 2 anti-ice sw. Off

Engine 2 anti-ice sw. On
nPROP nJET

(n=2–4)
ENGINE2_ANTI_ICE_SWITCH

84

85
Engine 3 left mag not active

Engine 3 left magneto active
nPROP

(n=3–4)
ENGINE3_MAGNETO_LEFT

86

87
Engine 3 rt mag not active

Engine 3 rt magneto active
nPROP

(n=3–4)
ENGINE3_MAGNETO_RIGHT

88

89
Engine 3 anti-ice sw. Off

Engine 3 anti-ice sw. On
nPROP nJET

(n=3–4)
ENGINE3_ANTI_ICE_SWITCH

90

91
Engine 4 left mag not active

Engine 4 left magneto active
4PROP
ENGINE4_MAGNETO_LEFT

92

93
Engine 4 rt mag not active

Engine 4 rt magneto active
4PROP
ENGINE4_MAGNETO_RIGHT

94

95
Engine 4 anti-ice sw. Off

Engine 4 anti-ice sw. On
4PROP 4JET
ENGINE4_ANTI_ICE_SWITCH

96

97
Parking brake off

Parking brake on
CP
Derived from PARKING_BRAKE_POS

98

99
Prop sync off

Prop sync on
None
PROPSYNC_ACTIVE (FS2000/2002 only)

100–103
See top of table

104–115
Reserved

116

117
Flight Director off

Flight Director active
None
FLIGHT_DIRECTOR_ACTIVE (FS2000/2002 only)

118

119
Alternator Off

Alternator On
None
MASTER_ALTERNATOR (FS2000/2002 only)

120

121
Battery Off

Battery On
None
MASTER_BATTERY (FS2000/2002 only)

122

123
Avionics Off

Avionics On
None
AVIONICS_MASTER_SWITCH (FS2000/2002 only)

124

125
NAV1 intercept Off

NAV1 intercept On
TR1

KR1

MCP
OBS1_COURSE_OK

(see NavIntercept parameters earlier in this document)

Or SMCP VOR LOC annunciated

126

127
GS intercept Off

GS intercept On
TR1

KR1

MCP
GS_INTERCEPT_OK

(see GsIntercept parameters earlier in this document)

Or SMCP GS LOCK annunciated

128

129
LOC intercept Off

LOC intercept On
TR1

KR1

MCP
LOC_INTERCEPT_OK

(see LocIntercept parameters earlier in this document)

Or SMCP APP LOC annunciated

130

131
BC intercept Off

BC intercept On
TR1

KR1
BC_INTERCEPT_OK

(see LocIntercept parameters earlier in this document)

132

133
LNAV Off

LNAV On
MCP
SMCP only, LNAV indicator

134

135
VNAV Off

VNAV On
MCP
SMCP only, VNAV indicator

136

137
FLCH Off

FLCH On
MCP
SMCP only, FLCH indicator

138

139
THR Off

THR On
MCP
SMCP only, THR indicator

140

141
F/D Off

F/D On
MCP
SMCP only, F/D indicator

142

143
CMDL Off

CMDL On
MCP
SMCP only, A/P L (AP1) indicator

144

145
CMDC Off

CMDC On
MCP
SMCP only, A/P C (AP2) indicator

146

147
CMDR Off

CMDR On
MCP
SMCP only, A/P R (AP3) indicator

150

151
PFD ‘Windshear’ off

PFD ‘Windshear’ on
MCP
SMCP only

152

153
PFD ‘Below GS’ off

PFD ‘Below GS’ on
MCP
SMCP only

154

155
PFD ‘Caution’ off

PFD ‘Caution’ on
MCP
SMCP only

156

157
PFD ‘Warning’ off

PFD ‘Warning’ on
MCP
SMCP only

158-161
Reserved
MCP
SMCP only, additional flags (bits 4, 5 in 0x4FE)

162

163
ND VOR1 needle inactive

ND VOR1 needle active
MCP
SMCP only

164

165
ND VOR2 needle inactive

ND VOR2 needle active
MCP
SMCP only

166–181
Reserved
MCP
SMCP only, additional flags (bits 8–15 in 0x4FE)

182

183
CDU EXEC light off

CDU EXEC light on
MCP
SMCP only

184

185
CDU MSG light off

CDU MSG light on
MCP
SMCP only

186

187
CDU FAIL light off

CDU FAIL light on
MCP
SMCP only

188–189
Reserved
MCP
SMCP only, additional flag (bit 3 in 0x52C)

190–199
Reserved
–
These are used in EpicLink, being set in a remote EPIC by use of “SENDQPn” commands in the local EPIC.

200

201
Autopilot not available

Autopilot available
CFG
AIRCRAFT_AUTOPILOT_AVAILABLE

202

203
Flaps not available

Flaps available
CFG
AIRCRAFT_FLAPS_AVAILABLE

204

205
Stall horn not available

Stall horn available
CFG
AIRCRAFT_STALL_HORN_AVAILABLE

206

207
Mixture set not available

Mixture setting available
CFG
AIRCRAFT_ENGINE_MIXTURE_AVAILABLE

208

209
Carb heat not available

Carb heat available
CFG
AIRCRAFT_CARB_HEAT_AVAILABLE

210

211
Spoilers not available

Spoilers available
CFG
AIRCRAFT_SPOILER_AVAILABLE

212

213
Not tail dragger

Tail dragger
CFG
AIRCRAFT_IS_TAIL_DRAGGER

214

215
Strobe not available

Strobe available
CFG
AIRCRAFT_STROBES_AVAILABLE

216

217
Toe brakes not available

Toe brakes available
CFG
AIRCRAFT_TOE_BRAKES_AVAILABLE

218

219
NAV1 not available

NAV1 available
CFG
AIRCRAFT_NAV1_AVAILABLE

220

221
NAV2 not available

NAV2 available
CFG
AIRCRAFT_NAV2_AVAILABLE

222

223
NAV1 OBS not available

NAV1 OBS available
CFG
AIRCRAFT_NAV1_OBS_AVAILABLE

224

225
NAV2 OBS not available

NAV2 OBS available
CFG
AIRCRAFT_NAV2_OBS_AVAILABLE

226

227
VOR2 gauge not available

VOR2 gauge available
CFG
AIRCRAFT_VOR2_GAUGE_AVAILABLE

228

229
Gyro drift not operating

Gyro drift is operating
CFG
AIRCRAFT_GYRO_DRIFT_AVAILABLE

230

231
A/P alt not manually set

A/P alt can be manually set
CFG
AUTOPILOT_ALTITUDE_MANUALLY_TUNABLE

232

233
A/P hdg not manually set

A/P hdg can be manually set
CFG
AUTOPILOT_HEADING_MANUALLY_TUNABLE

234

235
Engine 1 not combusting

Engine 1 is combusting
nPROP nJET

(n=1–4)
ENGINE1_COMBUSTION

236

237
Engine 2 not combusting

Engine 2 is combusting
nPROP nJET

(n=2–4)
ENGINE2_COMBUSTION

238

239
Engine 3 not combusting

Engine 3 is combusting
nPROP nJET

(n=3–4)
ENGINE3_COMBUSTION

240

241
Engine 4 not combusting

Engine 4 is combusting
4PROP 4JET
ENGINE4_COMBUSTION

242

243
Ident ADF off

Ident ADF on
NAV
ADF_MORSE_IDENT

244

245
Ident NAV1 off

Ident NAV1 on
NAV
NAV1_MORSE_IDENT

246

247
Ident NAV2 off

Ident NAV2 on
NAV
NAV2_MORSE_IDENT

248

249
Ident DME1 off

Ident DME1 on
NAV
DME1_MORSE_IDENT

250

251
Ident DME2 off

Ident DME2 on
NAV
DME2_MORSE_IDENT

Pigeon Hole values
Notes:

Pigeon Hole data in EPIC amounts to 4x 8-bit values (bytes), numbered 0–3. Except where otherwise stated (and there are a number of exceptions to be noted), PH values from FS are stored into these bytes as follows:

Bytes 0–1 contain two parts of the value, byte 0 being from 0–99 and byte 1 also usually being 0–99. The overall value is Byte0*100 + Byte1. This decimal split is to make it easy to drive decimal displays in two parts, allowing each to be dialled separately by inner and outer rotary controls (as on the TR–1 radio stack). The maximum value is therefore usually 9999.

If the value is invalid (e.g. not set yet) then the first byte (byte 0) is set to 0xFF (255). This should always be checked for, and the relevant display blanked or left to display the preceding valid value.

If the value is negative (e.g. as possible for Vertical Speeds), then these two bytes contain the absolute value (unsigned). Bytes 2–3 should be used in such cases.

Bytes 2-3 contain a 16-bit (word) value in normal Intel lo-hi form. This value may be negative, but in this case contain the absolute value with 32768 (hexadecimal 8000) added. To test for negativeness, see if byte 2 is 128 or greater. Intended values can therefore range from –32767 to +32767, or 0 to 65535, depending upon whether negatives are used or not. This value is always present even if Byte 0 = 255, indicating an invalid value.

Several macros are provided in EPICVXD.INC to allow Pigeon Hole values to be extracted and manipulated:

In these examples, “var8” refers to any 8-bit variable, “var16” to any 16-bit variable, and “const” to any 16-bit constant.

getPH8(var8,const16)

Places a selected PH byte into the 8-bit variable. The 16-bit constant contains the Pigeon Hole number (0–255) in the lower 8 bits and the byte number (0–3) in the higher 8 bits. This is a bit clearer when expressed in hexadecimal, for example: 0x021f refers to byte 2 of PH 31 (31 in hex is 1f).

getPH16(var16,const16)

Places two contiguous PH bytes as a word value (lo-hi) into the 16-bit variable. The 16-bit constant contains the Pigeon Hole number (0–255) in the lower 8 bits and the byte number (0–3) in the higher 8 bits. This is clearer expressed in hexadecimal, for example: 0x021f refers to bytes 2–3 of PH 31 (31 in hex is 1f).

Please also see the earlier sections about “scaling” values for Pigeon Holes.

Note that access to Pigeon Holes 128–255 is not possible with many earlier versions of the EPIC firmware. You may need an update.

(N.B. Not all available in FS2000/FS2002)
PH no.
FS Variable
Sets
Conversion & Notes

0
PanelId

(from EPICINFO, not FS98)
all
This is a user set value if a Panel Id has been set in the CFG file. Otherwise, byte 0 is 255 unless SMCP=1 and the MCP program is running, in which case byte 0 is set to 254 instead.

1
COM_FREQUENCY
TR1 KR1 NAV
Only 4 digits are provided. Of the form 1nn.nn the 1 is assumed.

2
NAV1_FREQUENCY
TR1 KR1 NAV
Ditto

3
NAV2_FREQUENCY
TR1 KR1 NAV
Ditto

4
ADF_FREQUENCY and ADF_EXTENDED_FREQUENCY
TR1 KR1 NAV
This provides 0–99 in Byte 0 and 20–169 in byte 1, making the full 0200.0–1699.9 ADF range possible in one value

5
TRANSPONDER_CODE
TR1 KR1
To make this easy to handle, the 4 digits (0–7) are provided in each of the 4 Pigeon Hole bytes 0–3, with byte 0 containing the lowest value (last) digit.

6
DME1_DISTANCE
TR1 KR1 NAV
Units: 1/10th nm. Range 0–99.9. Byte 0 will contain the 0–9.9 part, whilst Byte 1 contains the tens digit. Values greater than 99.9 are changed to 99.9. This is set to ‘invalid’ (byte 0=255) if the VOR1_SIGNAL_STRENGTH is low.

7
DME1_SPEED
TR1 KR1 NAV
Units: knots. Range 0–999. This is set to ‘invalid’ (byte 0=255) if the VOR1_SIGNAL_STRENGTH is low.

8
DME2_DISTANCE
TR1 KR1 NAV
See 6

9
DME2_SPEED
TR1

KR1

NAV
See 7

10
AIRSPEED
CP
Units: knots. Range 0–999

11
VERTICAL_SPEED
CP
Units: ft/min.

Signed value in bytes 2–3.

12
PLANE_HEADING_DEGREES_MAGNETIC
CP GPS
1–360

13
PLANE_BANK_DEGREES
ADV
–179 to +180. (Absolute value in bytes 0–1, signed by 0x8000 in bytes 2–3)

14
PLANE_PITCH_DEGREES
ADV
–179 to +180. (Absolute value in bytes 0–1, signed by 0x8000 in bytes 2–3)

15
AUTOPILOT_HEADING_LOCK_DIR
MCP
1–360

Or for SMCP, MCP’s heading setting (0–359). Note that –1 (FFFF) in bytes 2–3 and 255 (FF) in byte 0 is used to indicate that the MCP HDG display should be blanked.

16
AUTOPILOT_ALTITUDE_LOCK_VAR
MCP
Units: feet. Use bytes 2-3 for full range 0–65535

Or for SMCP, MCP’s altitude setting (0–65500, round down to 100’s). Note that –1 (FFFF) in bytes 2–3 and 255 (FF) in byte 0 is used to indicate that the MCP ALT display should be blanked.

17
AUTOPILOT_AIRSPEED_HOLD_VAR
MCP
Knots

Or for SMCP, MCP’s speed setting (also knots). QP 48/49 infdicates whether this or the Mach value (below) should be shown. Note also that –1 (FFFF) in bytes 2–3 and 255 (FF) in byte 0 is used to indicate that the MCP Speed display should be blanked.

18
AUTOPILOT_MACH_HOLD_VAR
MCP
Mach x 100.

Or for SMCP, MCP’s mach (same units). QP 48/49 infdicates whether this or the IAS value (above) should be shown. Note also that –1 (FFFF) in bytes 2–3 and 255 (FF) in byte 0 is used to indicate that the MCP Speed display should be blanked.

19
AUTOPILOT_VERTICAL_HOLD_VAR
MCP
See 11

Or for SMCP, MCP’s vertical speed setting (signed). Note that –1 (FFFF) in bytes 2–3 and 255 (FF) in byte 0 is used to indicate that the MCP V/S display should be blanked.

20
FUEL_QUANTITY_RIGHT
CP FUEL
In U.S. gallons

21
FUEL_QUANTITY_LEFT
CP FUEL
Ditto

22
FUEL_QUANTITY_CENTRE
CP FUEL
Ditto

23
AMBIENT_TEMP_DEGREES_C
WEA

24
TOTAL_AIR_TEMP
WEA CP

25
AMBIENT_PRES_MBAR
WEA
Converted from FS98’s value by /16

26
BAROMETRIC_PRESSURE
WEA
Ditto (in FS2000/2002, QNH computed by EPICINFO)

27
ALT_FROM_BAROMETRIC_PRESSURE
CP
In feet. Use value in bytes 2–3 for full range 0–65535.

28
MACH
CP
Mach x 100. Converted from FS98’s mach values

29
NAV1_VOR_RADIAL
KR1 NAV
Degrees 1–360, radial on NAV1 VOR, if received. This is set to ‘invalid’ (byte 0=255) if the vor SIGNAL_STRENGTH is low

30
NAV2_VOR_RADIAL
KR1 NAV
See 29, but for NAV2.

31
PRESSURE_ALTITUDE

(N.B. This is a value derived by EPICINFO)
KR1
Feet (0–9999). Use bytes 2-3 for full range 0–65535. This is a value computed by EpicInfo from the Barometric Pressure and Plane Altitude. NB only supplied when “Flight Level” changes: i.e 100’s, unless explicitly requested as a parameter, not implied by KR1

32
PLANE_LATITUDE
GPS
Byte 0 = Degrees

Byte 1 = Minutes

Byte 2 = Seconds

Byte 3 = 1/100ths seconds, +128 for South (else North)

33
PLANE_LONGITUDE
GPS
Byte 0 = Degrees

Byte 1 = Minutes

Byte 2 = Seconds

Byte 3 = 1/100ths seconds, +128 for West (else East)

34
PLANE_HEADING_DEGREES_TRUE
GPS
Degrees 1–360

35
AMBIENT_WIND_VEL
WEA GPS
Knots

36
AMBIENT_WIND_DIR
WEA GPS
Degrees 1–360

37
PLANE_ALTITUDE
CP

GPS
In feet. Use value in bytes 2–3 for full range 0–65535.

38
GROUND_ALTITUDE
GPS
In feet. Use value in bytes 2–3 for full range 0–65535.

39
ELEVATOR_TRIM_POS
ADV
Raw units from FS98 (Use signed value in bytes 2-3:

–16384 = full nose down)

40
VOR1_SIGNAL_STRENGTH
NAV
Raw FS98 value. This is also used to decide whether the Radial and DME values for time and speed are valid. (There’s no separate signal strength indication for the DME).

41
VOR2_SIGNAL_STRENGTH
NAV
See 40.

42
VOR2_BEARING_DEGREES
NAV
Degrees 1–360

43
ADF_SIGNAL_STRENGTH
NAV
Raw FS98 value. This is also used to decide whether the Radial value is valid.

44
ADF_CARD_RADIAL
KR1

NAV
Degrees 1–360. This is set to ‘invalid’ (byte 0=255) if the ADF_SIGNAL_STRENGTH is low

45
VOR1_BACK_COURSE_FLAGS
NAV
?

46
VOR1_TF_FLAG
NAV
?

47
VOR1_OBI
NAV
Raw FS98 value

48
VOR2_BACK_COURSE_FLAGS
NAV
?

49
VOR2_TF_FLAG
NAV
?

50
VOR2_OBI
NAV
Raw FS98 value

51
AIRSPEED_TRUE_CALIBRATE
CPX
?

52
BARBER_POLE_ASPD
CPX
Knots

53
MACH_MAX_OPERATE
CFG
Mach x 100

54
TURN_COORDINATOR_BALL_POS
CPX
Raw FS98 value

55
KOHLSMAN_SETTING_MB
CPX
Mb, as it says.

56
ATTITUDE_INDICATOR_PITCH_DEGREES
CPX
–179 to +180. (Absolute value in bytes 0–1, signed by 0x8000 in bytes 2–3)

57
ATTITUDE_INDICATOR_BANK_DEGREES
CPX
–179 to +180. (Absolute value in bytes 0–1, signed by 0x8000 in bytes 2–3)

58
MAGNETIC_VAR
GPS
1/100ths degrees. [Note, I’m not sure now, but negatives may not be used here. If so, –1.00 will come out as 359.00]

59
WHISKEY_COMPASS_DEGREES
CPX
Degrees 1–360

60
PLANE_HEADING_DEGREES_GYRO
CPX
Degrees 1–360

61
ADF_IDENTITY
NAV GPS
This gives a 4 character string, in ASCII, being the actual ID of the dialled ADF.

Byte 0 = 1st character , etc.

Spaces pad ID’s of less than 4ch

62
VOR1_IDENTITY
NAV GPS
See 61

63
VOR2_IDENTITY
NAV GPS
See 61

64
ADF_NEEDLE
None
Raw needle position value. Use the 16-bits in bytes 2-3. No validity indication is provided, although ADF_SIGNAL_STRENGTH (PH 43) could be used.

65
VOR1_NEEDLE
None
Raw needle position value. Use the 16-bits in bytes 2-3. Byte 0 gives 255 when the VOR1 signal is invalid.

66
VOR1_GS_NEEDLE
None
Raw needle position value. Use the 16-bits in bytes 2-3. Check validity via the VOR1 GS flag (QPs 54/55)

67
VOR2_NEEDLE
None
Raw needle position value. Use the 16-bits in bytes 2-3. No validity indication is available, although VOR2_SIGNAL_STRENGTH (PH 41) could be used.

68
G_FORCE
None
This is a positive or negative value, positive units in byte 1, hundredths in byte 0. Check if byte 2 is >= 128 for negative values.

69
SMCP only: SPD mode annunciator

MCP
0 =off, 1=ARM, 2=N1 (THR), 3=MCP SPD, 4=RETARD, 5=THR HLD

70
SMCP only: HDG mode annunciator

MCP
0=off, 1=HDG SEL,

2=LOC ARM, 3=VOR LOC, 4=APP LOC, 5=APP ARM, 8=LNAV

71
SMCP only: ALT mode annunciator

MCP
0=off, 1=GS LOCK,

2=ALT HLD, 3=MCP SPD, 4=V/S, 5=ALT ACQ,

6=GS ARM, 7=TOGA (initial), 8=TOGA (FLCH phase)

72
SMCP only: CMD mode annunciator

MCP
0=off, 1=CMD, 2=FD, 3=LAND 2, 4=LAND 3,

5=NO AUTOLAND

73
SMCP only: ND Mode setting
MCP
1=Map, 2=Map Ctr, 2=Rose, 4=Map Plan

74
SMCP only: ND Overlay selection
MCP
Bit 1=VOR, 2=NDB, 3=ARP, 4=WPT, 5=WPTdata, 6=VOR needles active

75
SMCP only: ND Range setting
MCP
1=10, 2=20, 3=40, …

76
KOHLSMAN_SETTING_HG
CPX
In inches Hg, as it says.

77
SIM_SPEED
None
Use the 16-bit value. Just one bit is set, indicating a sim speed as follows:

0.25x
0x0040

0.5x
0x0080

1x
0x0100

2x
0x0200

4x
0x0400

8x
0x0800

16x
0x1000

32x
0x2000

64x
0x4000

128x
0x8000

78
ZULU_HOUR

ZULU_MINUTE
GPS
UTC time in Hours and Minutes: minutes in byte 0, hours in byte 1. Either name will select this.

79
ANGLE_OF_ATTACK_INDICATOR
ADV
Raw FS98 value. Unknown units

80
FUEL_TANK_LEFT_MAIN_CAPACITY

(Here this includes
FUEL_TANK_LEFT_AUX_CAPACITY

FUEL_TANK_LEFT_TIP_CAPACITY)
FUEL
Total in U.S. gallons of these three values

81
FUEL_TANK_CENTER_CAPACITY
FUEL
In U.S. gallons

82
FUEL_TANK_RIGHT_MAIN_CAPACITY

(Here this includes
FUEL_TANK_RIGHT_AUX_CAPACITY

FUEL_TANK_RIGHT_TIP_CAPACITY)
FUEL
Total in U.S. gallons of these three values

83
FUEL_TANK_SELECTOR
FUEL
?

84
CROSS_FEED_SELECTOR
FUEL
?

85
OIL_QUANTITY_TOTAL
CPX
1/100ths of Quart. (Quarts in byte 1, hundredths in byte 0).

86
CHARGING_AMPS
CPX
1/100ths of Amp

87
SUCTION_PRESSURE
CPX
1/100ths inches Hg (?)

88
DME1_TIME

(N.B. This is a value derived by EPICINFO)
TR1 KR1 NAV
Minutes (0–99). This is a value computed by EpicInfo from the DME values for distance and speed. It is set to ‘invalid’ (byte 0=255) if the vor SIGNAL_STRENGTH is low.

89
DME2_TIME

(N.B. This is a value derived by EPICINFO)
TR1 KR1 NAV
See 88

90
ALTITUDE_ABOVE_GROUND

(N.B. This is a value derived by EPICINFO)
GPS CP
In feet. Use value in bytes 2–3 for full range 0–65535.

91
FUEL_TANK_LEFT_PERCENT

(N.B. This is a value derived by EPICINFO)
FUEL
Fuel as % of capacity in Left Main, Aux and wing tip tanks

92
FUEL_TANK_LEFTCEN_PERCENT

(N.B. This is a value derived by EPICINFO)
FUEL
Fuel as % of capacity in Left Main, Aux and wing tip tanks, plus half that in the Centre tanks (with half that capacity included too, of course). This value is intended for use where only two gauges are used but three tank areas are available.

93
FUEL_TANK_CENTER_PERCENT

(N.B. This is a value derived by EPICINFO)
FUEL
Fuel as % of capacity in Centre tanks

94
FUEL_TANK_RIGHTCEN_PERCENT

(N.B. This is a value derived by EPICINFO)
FUEL
Fuel as % of capacity in Right Main, Aux and wing tip tanks, plus half that in the Centre tanks (with half that capacity included too, of course). This value is intended for use where only two gauges are used but three tank areas are available.

95
FUEL_TANK_RIGHT_PERCENT

(N.B. This is a value derived by EPICINFO)
FUEL
Fuel as % of capacity in Right Main, Aux and wing tip tanks

96–99
Reserved
–
These are used in EpicLink, being set in a remote EPIC by use of “SENDPHn” commands in the local EPIC.

100
ENGINE1_N1_RPM
nJET

(n=1–4)
%

ENGINE1_RPM

(N.B. This is a value derived by EPICINFO)
nPROP

(n=1–4)
RPM

101
ENGINE1_N2_RPM
nJET

(n=1–4)
%

ENGINE1_CHT
nPROP

(n=1–4)
Degrees C?

102
ENGINE1_FF_PPH
nJET

(n=1–4)
Fuel flow in pounds per hour

ENGINE1_FF_GPH
nPROP

(n=1–4)
Fuel flow in US gallons per hour

103
ENGINE1_PRESSURE_RATIO
nJET

(n=1–4)
Units in byte 1, hundredths in byte 0.

ENGINE1_MANIFOLD_PRESSURE
nPROP

(n=1–4)
Is this inches of Hg? (Hundredths given)

104
ENGINE1_EGT
nJET nPROP

(n=1–4)
Degrees C (not in FS2000/2002—approx value provided)

105
ENGINE1_OIL_PRESSURE
nJET nPROP

(n=1–4)
1/100ths psi

106
ENGINE1_OIL_QUANTITY
nJET nPROP

(n=1–4)
%

107
ENGINE1_OIL_TEMPERATURE
nJET nPROP

(n=1–2)
Degrees C

ENGINE3_N1_RPM
nJET

(n=3–4)
%

ENGINE3_RPM

(N.B. This is a value derived by EPICINFO)
nPROP

(n=3–4)
RPM

108
ENGINE1_FUEL_PRESSURE
nJET nPROP

(n=1–2)
PSI

ENGINE3_N2_RPM
nJET

(n=3–4)
%

ENGINE3_CHT
nPROP

(n=3–4)
Degrees C?

109
ENGINE1_ELECTRICAL_LOAD
nJET nPROP

(n=1–2)
?

ENGINE3_FF_PPH
nJET

(n=3–4)
Fuel flow in pounds per hour

ENGINE3_FF_GPH
nPROP

(n=3–4)
Fuel flow in US gallons per hour

110
ENGINE1_TURBINE_TEMPERATURE
nJET

(n=1–2)
Degrees C?

ENGINE1_TORQUE_PERCENT
nPROP

(n=1–2)
%

ENGINE3_PRESSURE_RATIO
nJET

(n=3–4)
Units in byte 1, hundredths in byte 0.

ENGINE3_MANIFOLD_PRESSURE
nPROP

(n=3–4)
Is this inches of Hg? (Hundredths given)

111
ENGINE1_HYDRAULIC_PRESSURE
nJET

(n=1–2)
1/100ths PSI

ENGINE1_ROTOR_RPM
nPROP

(n=1–2)
?

ENGINE3_EGT
nJET nPROP

(n=3–4)
Degrees C (not in FS2000/2002—approx value provided)

112
ENGINE1_HYDRAULIC_QUANTITY
nJET

(n=1–2)
%

ENGINE1_TORQUE
nPROP

(n=1–2)
ft-lbs?

ENGINE3_OIL_PRESSURE
nJET nPROP

(n=3–4)
1/100ths PSI

113
ENGINE1_ENGINE_VIBRATION
nJET nPROP

(n=1–2)
?

ENGINE3_OIL_QUANTITY
nJET nPROP

(n=3–4)
%

114
ENGINE2_N1_RPM
nJET

(n=2–4)
%

ENGINE2_RPM

(N.B. This is a value derived by EPICINFO)
nPROP

(n=2–4)
RPM

115
ENGINE2_N2_RPM
nJET

(n=2–4)
%

ENGINE2_CHT
nPROP

(n=2–4)
Degrees C?

116
ENGINE2_FF_PPH
nJET

(n=2–4)
Fuel flow in pounds per hour

ENGINE2_FF_GPH
nPROP

(n=2–4)
Fuel flow in US gallons per hour

117
ENGINE2_PRESSURE_RATIO
nJET

(n=2–4)
Units in byte 1, hundredths in byte 0.

ENGINE2_MANIFOLD_PRESSURE
nPROP

(n=2–4)
Is this inches of Hg? (Hundredths given)

118
ENGINE2_EGT
nJET nPROP

(n=2–4)
Degrees C (not in FS2000/2002—approx value provided)

119
ENGINE2_OIL_PRESSURE
nJET nPROP

(n=2–4)
1/100ths psi

120
ENGINE2_OIL_QUANTITY
nJET nPROP

(n=2–4)
%

121
ENGINE2_OIL_TEMPERATURE
2JET 2PROP
Degrees C

ENGINE4_N1_RPM
4JET
%

ENGINE4_RPM

(N.B. This is a value derived by EPICINFO)
4PROP
RPM

122
ENGINE2_FUEL_PRESSURE
2JET 2PROP
PSI

ENGINE4_N2_RPM
4JET
%

ENGINE4_CHT
4PROP
Degrees C?

123
ENGINE2_ELECTRICAL_LOAD
2JET 2PROP
?

ENGINE4_FF_PPH
4JET
Fuel flow in pounds per hour

ENGINE4_FF_GPH
4PROP
Fuel flow in US gallons per hour

124
ENGINE2_TURBINE_TEMPERATURE
2JET
Degrees C?

ENGINE2_TORQUE_PERCENT
2PROP
%

ENGINE4_PRESSURE_RATIO
4JET
Units in byte 1, hundredths in byte 0.

ENGINE4_MANIFOLD_PRESSURE
4PROP
Is this inches of Hg? (Hundredths given)

125
ENGINE2_HYDRAULIC_PRESSURE
2JET
1/100ths PSI

ENGINE2_ROTOR_RPM
2PROP
?

ENGINE4_EGT
4JET 4PROP
Degrees C (not in FS2000/2002—approx value provided)

126
ENGINE2_HYDRAULIC_QUANTITY
2JET
%

ENGINE2_TORQUE
2PROP
ft-lbs?

ENGINE4_OIL_PRESSURE
4JET 4PROP
1/100ths PSI

127
ENGINE2_ENGINE_VIBRATION
2JET 2PROP
?

ENGINE4_OIL_QUANTITY
4JET 4PROP
%

128
Reserved

129
ENGINE1_THROTTLE_LEVER_POS
None
0–16384

130
ENGINE2_THROTTLE_LEVER_POS
None
0–16384

131
ENGINE3_THROTTLE_LEVER_POS
None
0–16384

132
ENGINE4_THROTTLE_LEVER_POS
None
0–16384

133
ENGINE1_PROPELLER_LEVER_POS
None
0–16384

134
ENGINE2_PROPELLER_LEVER_POS
None
0–16384

135
ENGINE3_PROPELLER_LEVER_POS
None
0–16384

136
ENGINE4_PROPELLER_LEVER_POS
None
0–16384

137
ENGINE1_MIXTURE_LEVER_POS
None
0–16384

138
ENGINE2_MIXTURE_LEVER_POS
None
0–16384

139
ENGINE3_MIXTURE_LEVER_POS
None
0–16384

140
ENGINE4_MIXTURE_LEVER_POS
None
0–16384

141
ENGINE1_STARTER_SWITCH_POS
None
?

142
ENGINE2_STARTER_SWITCH_POS
None
?

143
ENGINE3_STARTER_SWITCH_POS
None
?

144
ENGINE4_STARTER_SWITCH_POS
None
?

145
FLAPS_POS_LEFT
None

146
FLAPS_POS_RIGHT
None

147
AILERON_POS
None

148
RUDDER_POS
None

149
ELEVATOR_POS
None

150
AILERON_TRIM
None

151
RUDDER_TRIM
None

152
SMCP only: Engine warning modes (Engines 1 and 2)
MCP
Bit 0 = E1 Start valve open

Bit 1 = E1 Oil filter bypass

Bit 2 = E1 Low oil pressure

Bit 8 = E2 Start valve open

Bit 9 = E2 Oil filter bypass

Bit 10 = E2 Low oil pressure

153
SMCP only: Engine warning modes (Engines 3 and 4)
MCP
Bit 0 = E3 Start valve open

Bit 1 = E3 Oil filter bypass

Bit 2 = E3 Low oil pressure

Bit 8 = E4 Start valve open

Bit 9 = E4 Oil filter bypass

Bit 10 = E4 Low oil pressure

154–255
Not yet used by EPICINFO

EPICINFO Log Files

The EPICINFO module produces a LOG file each time it is run. To run tests, just ensure Log=1 is set in the [All] section of the EPICINFO.CFG file. Select the desired aircraft, run whatever needs testing.

The log is a plain text file and can be examined in Notepad or any other text viewer or editor. Some viewers allow you to look at it whilst FS is still running, but with others you may have to terminate FS first. The log can easily be printed, but you might want to select a small font or landscape orientation to avoid unwanted wraps. The following page shows some extracts from a real log (rather outdated now, sorry), with some explanatory notes indicated by numbers, thus:

(
The number on the very left of every line represents the elapsed time from installation in milliseconds. Thus, this is 0 at the start. QP100 = DefineQProc #100.

(
Here it was 1.56 seconds later when EPICINFO was called to “initialise” itself. Here is where it reads and sends the initial values of all the interesting values.

(
QP’s are sent for all the initial states, as here, the AP is off (value = 0). The original value for each FS98 value is given in ‘double’ floating point form and in hexadecimal.

(
The initial DME selected in DME1. This is actually provided as a simple ENUMerated value by FS98, which is why the floating point equivalent looks so silly.

(
The DME values all seem to be zero initially, even though they aren’t valid. This is rectified later (time 2.888, see note ().

(
The frequencies are provided in BCD format. The floating point form is useless here. Note how the Pigeon Hole bytes are logged: 030 031, 03130 means byte 0 = 30 (decimal), Byte 1 = 31, and Bytes 2–3, together, provide the 16-bit value 3130. The actual frequency is 131.30.

(
The ADF frequency is made more complicated by the split in FS98 between two values. This ‘extra’ line shows the Extended part, zero here. If the ADF frequency is 1234.5 the ADF_FREQUENCY would show 0x0234 whilst the ADF_EXTENDED_FREQUENCY would show 0x0105—the two extra digits are in separate bytes. EPICINFO takes care of all this.

(
The transponder code, here 1200 (as usual <G>), is sent with a digit in each PH byte. It looks odd here: 000 000, 00258 = 0, 0, 2, 1 (0x0102 = 258 decimal).

(
The aircraft is on the ground initially (here).

(
Here’s the first value with a genuine floating point value: 358.673 degrees, which the gauge rounds to 359.

(
The total air temperature is zero ... why? (A better value is shown later). Possibly TAT is not valid till we’re flying?

(
Here the four DME values are being indicated as invalid (we’re on the tarmac at Meigs and we’re not receiving any DME information).

(
QP102 is sent when all the initial values have been sent. Only changes are sent from this point. We’re 2.892 seconds into the session.

(
In this example we’re slewing upwards. The vertical speed is one of the first indicated changes.

(
And here’s a better TAT value. Why now?

(
There was one of these earlier. This is the second time. Note time now: 77.039 seconds into the session.

(
Here’s a nasty message. The Gauge couldn’t talk to the EPIC (in this case it had hung!). Something’s wrong if you get these.

(
The module was unloaded (“killed”) after a total session time of 424.310 seconds.

(
 0 QP100 = Install Done

(
 1560 QP103 = Initialisation Done

(
 1560 QP018 sent, orig val=0 [0x0000000000000000] AUTOPILOT_ACTIVE

 1560 QP014 sent, orig val=0 [0x0000000000000000] MARKER_BEACON_STATE

 1560 QP022 sent, orig val=0 [0x0000000000000000] AUTOPILOT_HEADING_LOCK

(
 1560 QP001 sent, orig val=4.94066e-324 [0x0000000000000001] CURRENT_DME

...

(
 1560 PH006 = 000 000, 00000 [Hex 00 00, 00 00], orig val=0 [0x0000000000000000] DME1_DISTANCE

 1560 PH007 = 000 000, 00000 [Hex 00 00, 00 00], orig val=0 [0x0000000000000000] DME1_SPEED

 1560 PH008 = 000 000, 00000 [Hex 00 00, 00 00], orig val=0 [0x0000000000000000] DME2_DISTANCE

 1560 PH009 = 000 000, 00000 [Hex 00 00, 00 00], orig val=0 [0x0000000000000000] DME2_SPEED

(
 1560 PH001 = 030 031, 03130 [Hex 1E 1F, 3A 0C], orig val=6.22127e-320 [0x0000000000003130] COM_FREQUENCY

 1560 PH002 = 050 010, 01050 [Hex 32 0A, 1A 04], orig val=2.06322e-320 [0x0000000000001050] NAV1_FREQUENCY

 1560 PH003 = 090 013, 01390 [Hex 5A 0D, 6E 05], orig val=2.47428e-320 [0x0000000000001390] NAV2_FREQUENCY

 1587 PH004 = 040 041, 04140 [Hex 28 29, 2C 10], orig val=5.15805e-321 [0x0000000000000414] ADF_FREQUENCY

(
 1587 orig val=0 [0x0000000000000000] ADF_EXTENDED_FREQUENCY

(
 1587 PH005 = 000 000, 00258 [Hex 00 00, 02 01], orig val=2.27665e-320 [0x0000000000001200] TRANSPONDER_CODE

(
 1587 QP013 sent, orig val=1 [0x3FF0000000000000] AIRCRAFT_ON_GROUND

 1587 QP026 sent, orig val=0 [0x0000000000000000] STALL_WARNING

 1587 QP028 sent, orig val=0 [0x0000000000000000] OVERSPEED_WARNING

...

(
 1697 PH012 = 059 003, 00359 [Hex 3B 03, 67 01], orig val=358.673 [0x40766AC3613C0000] PLANE_HEADING_DEGREES_MAGNETIC

 1697 PH013 = 000 000, 00000 [Hex 00 00, 00 00], orig val=0.00167437 [0x3F5B6ED000000000] PLANE_BANK_DEGREES

 1701 PH014 = 001 000, 00001 [Hex 01 00, 01 00], orig val=0.834961 [0x3FEAB80000000000] PLANE_PITCH_DEGREES

 1701 PH015 = 060 003, 00360 [Hex 3C 03, 68 01], orig val=0 [0x0000000000000000] AUTOPILOT_HEADING_LOCK_DIR

 1701 PH016 = 000 030, 03000 [Hex 00 1E, B8 0B], orig val=3000 [0x40A77001FAAEDC00] AUTOPILOT_ALTITUDE_LOCK_VAR

 1701 PH017 = 050 002, 00250 [Hex 32 02, FA 00], orig val=250 [0x406F400000000000] AUTOPILOT_AIRSPEED_HOLD_VAR

 1701 PH018 = 000 000, 00000 [Hex 00 00, 00 00], orig val=0.039978 [0x3FA4780000000000] AUTOPILOT_MACH_HOLD_VAR

 1701 PH019 = 000 018, 01800 [Hex 00 12, 08 07], orig val=1800 [0x409C200000000000] AUTOPILOT_VERTICAL_HOLD_VAR

 1701 PH020 = 084 028, 02884 [Hex 54 1C, 44 0B], orig val=2883.95 [0x40A687E730580000] FUEL_QUANTITY_RIGHT

 1701 PH021 = 084 028, 02884 [Hex 54 1C, 44 0B], orig val=2883.95 [0x40A687E730580000] FUEL_QUANTITY_LEFT

 1701 PH022 = 000 000, 00000 [Hex 00 00, 00 00], orig val=0 [0x0000000000000000] FUEL_QUANTITY_CENTER

 1701 PH023 = 014 000, 00014 [Hex 0E 00, 0E 00], orig val=13.7891 [0x402B940000000000] AMBIENT_TEMP_DEGREES_C

 1704 PH025 = 090 009, 00990 [Hex 5A 09, DE 03], orig val=15842 [0x40CEF10000000000] AMBIENT_PRES_MBAR

 1704 PH026 = 013 010, 01013 [Hex 0D 0A, F5 03], orig val=16208 [0x40CFA80000000000] BAROMETRIC_PRESSURE

(
 1704 PH024 = 000 000, 00000 [Hex 00 00, 00 00], orig val=0 [0x0000000000000000] TOTAL_AIR_TEMP

 1704 PH027 = 010 006, 00610 [Hex 0A 06, 62 02], orig val=610.08 [0x408310A3D70A3D70] ALT_FROM_BAROMETRIC_PRESSURE

 1707 ##### Generate Done

(
 2888 PH008 = 255 000, 65526 [Hex FF 00, F6 FF], orig val=-1 [0xBFF0000000000000] DME2_DISTANCE

 2888 PH007 = 255 000, 65535 [Hex FF 00, FF FF], orig val=-1 [0xBFF0000000000000] DME1_SPEED

 2888 PH006 = 255 000, 65526 [Hex FF 00, F6 FF], orig val=-1 [0xBFF0000000000000] DME1_DISTANCE

 2892 PH009 = 255 000, 65535 [Hex FF 00, FF FF], orig val=-1 [0xBFF0000000000000] DME2_SPEED

(
 2892 QP102 = First set of values sent

 4643 PH012 = 060 003, 00360 [Hex 3C 03, 68 01], orig val=359.672 [0x40767AC2613C0000] PLANE_HEADING_DEGREES_MAGNETIC

 7802 PH027 = 007 006, 00607 [Hex 07 06, 5F 02], orig val=606.8 [0x4082F66666666666] ALT_FROM_BAROMETRIC_PRESSURE

(
 7802 PH011 = 068 002, 00268 [Hex 44 02, 0C 01], orig val=348 [0x4075C00000000000] VERTICAL_SPEED

(
 7805 PH024 = 014 000, 00014 [Hex 0E 00, 0E 00], orig val=0.0538025 [0x3FAB8C0000000000] TOTAL_AIR_TEMP

 7805 PH025 = 088 009, 00988 [Hex 58 09, DC 03], orig val=15801 [0x40CEDC8000000000] AMBIENT_PRES_MBAR

 8797 PH011 = 073 000, 00073 [Hex 49 00, 49 00], orig val=95 [0x4057C00000000000] VERTICAL_SPEED

...

76613 PH027 = 010 006, 00610 [Hex 0A 06, 62 02], orig val=610.08 [0x408310A3D70A3D70] ALT_FROM_BAROMETRIC_PRESSURE

(
77039 QP012 sent, orig val=0 [0x0000000000000000] AIRCRAFT_ON_GROUND

78405 PH011 = 087 007, 00787 [Hex 57 07, 13 03], orig val=1024 [0x4090000000000000] VERTICAL_SPEED

78443 PH010 = 008 000, 00008 [Hex 08 00, 08 00], orig val=8 [0x4020000000000000] AIRSPEED

78604 PH027 = 013 006, 00613 [Hex 0D 06, 65 02], orig val=613.36 [0x40832AE147AE147B] ALT_FROM_BAROMETRIC_PRESSURE

78738 PH025 = 088 009, 00988 [Hex 58 09, DC 03], orig val=15801 [0x40CEDC8000000000] AMBIENT_PRES_MBAR

78941 PH010 = 024 000, 00024 [Hex 18 00, 18 00], orig val=24 [0x4038000000000000] AIRSPEED

78944 PH027 = 017 006, 00617 [Hex 11 06, 69 02], orig val=616.64 [0x4083451EB851EB85] ALT_FROM_BAROMETRIC_PRESSURE

79064 PH011 = 024 047, 04724 [Hex 18 2F, 74 12], orig val=6144 [0x40B8000000000000] VERTICAL_SPEED

79116 PH010 = 056 000, 00056 [Hex 38 00, 38 00], orig val=56 [0x404C000000000000] AIRSPEED

79267 PH010 = 080 000, 00080 [Hex 50 00, 50 00], orig val=80 [0x4054000000000000] AIRSPEED

79267 PH027 = 046 006, 00646 [Hex 2E 06, 86 02], orig val=646.16 [0x40843147AE147AE1] ALT_FROM_BAROMETRIC_PRESSURE

79397 PH011 = 036 002, 10236 [Hex 24 02, FC 27], orig val=13312 [0x40CA000000000000] VERTICAL_SPEED

79446 PH010 = 012 001, 00112 [Hex 0C 01, 70 00], orig val=112 [0x405C000000000000] AIRSPEED

79604 PH010 = 036 001, 00136 [Hex 24 01, 88 00], orig val=136 [0x4061000000000000] AIRSPEED

 ...

 (424310 ##### EPIC timed out: 32 bytes discarded! (Timeout = 500lmSecs)

 (424310 QP101 = Kill Done

HISTORY of major changes since version 3.0

1. Added FS2000 support. This involved some changes to obtain information not otherwise easily available. Many of the values provided by FS98 are simply not easily accessible in FS2000. Notes of differences and omissions in FS2000 are provided later. [3.10]

2. In FS2000, N1 and N2 are ‘corrected’ for FS2000 aircrafft, but remain reversed for transposed FS98 aircraft. In version 3.20 of EPICINFO an attempt is made to detect FS98 aircraft in FS2000 and only swap over the N1 and N2 Pigeon Hole values for FS2000 aircraft. [3.20]

3. Additional Schiratti MCP values are provided—see QPs 150-181. [3.20]

4. Added PH’s 129-144 for assorted lever position values (see table). Note that only recent versions of EPIC firmware support Pigeon Holes 128–255. [3.23]

5. Added PH’s 73-75 for additional Schiratti program indicators. These relate to the settings for the ND, within the PFD program itself. [3.24]
6. All the additional Tokens added to FS2000 and documented in the FS2000 Panels SDK are now recognised by EPICINFO. These can be logged. So far, the only FS2000 token which is used is PROPSYNC_ACTIVE, as mentioned in (23) above. [3.30]

7. When EPICINFO is used in FS2000 it now depends upon FSUIPC for many of the variables which have moved since FS98. All EPIC users requiring the full services of EPICINFO are advised to install the latest version of FSUIPC as well (the latest at the time of version 3.40 EPICINFO is version 1.93). [3.40]

8. QPs 182–189 inclusive are allocated to the lower 4 bits in the Schiratti CDU flags word (at 052C). These give the state of specific indicator lights on the CDU. [3.42]

9. Three additional Schiratti MCP controls can be assigned for use with the 747 MCP. These are MCP_SPDBTN, MCP_HDGBTN and MCP_ALTBTN. [3.44]

10. Pigeon Holes 145–151 are now provided for additional values indicating Flap and Control positions and Trims. Some of these are only usable with FS2000. Also, note that only recent versions of EPIC firmware support Pigeon Holes 128–255. [3.44]

11. Added facility to SCALE the original FS values by a multiplier and/or divisor before planting integral values into the Pigeon Holes. This allows greater precision or different units to be obtained for some values where required. [3.45]

12. Blanking V/S and Speed for Project Magenta changed to operate according to new blank flags in the MCP offsets. [3.50]

13. Many changes made for Project Magenta MCP and ND buttons and selectors. These need build level 304 or later of the PM MCP program. [3.75]
14. The FS2000 new events:

FLIGHT_DIRECTOR_ACTIVE

MASTER_ALTERNATOR

MASTER_BATTERY

AVIONICS_MASTER_SWITCH

Are now available, signalled via QPs 116-123, but only if specifically selected in the CFG file. [3.75]

37. Project Magenta ‘Engine Warning’ mode flag words are now provided as part of the MCP set. These are in PHs 152 and 153. [3.75]

38. Project Magenta ‘Engine Warning’ modes can now also be set, and the EICAS page and options controlled, using additional button assignments in the EPICINFO.CFG file (parameters EICAS_ …). [3.81]

39. Project Magenta First Officer’s ND modes can be separately controlled by additional button assignments in the EPICINFO.CFG file (parameters ND2_ …). [3.81]

40. Arranged so that if any of the EICAS_SVO controls are assigned, FSUIPC version 2.56 or later won’t automatically light a Project Magenta SVO indicator when the relevant jet starter is engaged. [3.85]]

41. Addition of more Project Magenta controls: ND and ND2 controls for selecting the range or mode with only one or two buttons. [3.87]

42. Addition of yet more Project Magenta controls, this time for AirBus (prefix AB_ in list below), plus a couple to increment and decrement the waypoint in the ND plan view. [3.88]

43. Corrected an error in negative angle PHs (such as PH13 and 14) which were not being supplied in the correct +ve plus 32768 format as documented. [3.892]

44. Made to work with the Released version of FS2002 [3.90]

45. Added support for the USB version of EPIC. [4.00]

46. Added facilities for the input of POV and Axis data to those controls in FS thought of as “discrete axis” controls. This is actually contrary to the original purpose of EPICINFO (i.e. to get data out to EPIC), and appears to duplicate facilities available in FS’s CFG file. However, it was found useful because of difficulties with POV input to FS2002 in particular, and was extended to encompass 16-bit axis input as well because of DirectInput restrictions on POV values and also because of the limitation of 16 POVs (one per joystick) using the standard Windows joystick API. [4.00 fully documented, though implemented in a much earlier version]

47. Added facilities for reading specified values from FS, through the FSUIPC interface, into user selected Pigeon Holes, and for writing values back to FS, via FSUIPC, from POVs or 16-bit axes. [4.00]

48. Fixed PH33 “PLANE_LONGITUDE” to work on FS2002 like it did on FS98 and FS2000. Apparently FS2002 supplies –ve values for Eastern longitudes! [4.00]

49. Extended FSUIPC offset read/write facilities to allow 64 of each instead of 32. [4.00]

50. Fixed an (old) bug which would have made Button operations on Project Magenta MCP functions unreliable if they were specified with “,1” (on to off) or “,2” (both) modifiers. [4.00]

51. Fixed a bug that caused POV inputs from an ISA EPIC to be ignored unless some other Axis inputs were also listed. [4.11]

52. Added support for FS2004 when used with an FS2004-compatible version of FSUIPC *2.983 Betas, or 3.00 release versions). [4.20]

53. Fixed the initial FS version detection method so that it works correctly on the French version of FS2004 (which has no “2004” in the title bar!). [4.21]

54. Fixed problems with Engin RPM values on FS2004 only. [4.22]

© Peter L. Dowson, 9th December 2003. Support via SimFlight Forum (see top of document)

